Аналитические методы решения уравнения теплопроводности. Решение уравнения теплопроводности Общее уравнение теплопроводности

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса , расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

∂ φ (r , t) ∂ t = ∇ ⋅ [ D (φ , r) ∇ φ (r , t) ] , {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot {\big [}D(\varphi ,\mathbf {r})\ \nabla \varphi (\mathbf {r} ,t){\big ]},}

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый коэффициент диффузии для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

∂ φ (r , t) ∂ t = ∑ i = 1 3 ∑ j = 1 3 ∂ ∂ x i [ D i j (φ , r) ∂ φ (r , t) ∂ x j ] . {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\sum _{i=1}^{3}\sum _{j=1}^{3}{\frac {\partial }{\partial x_{i}}}\left.}

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

∂ ϕ (r , t) ∂ t = D ∇ 2 ϕ (r , t) , {\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=D\nabla ^{2}\phi (\mathbf {r} ,t),}

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D {\displaystyle D} уравнение имеет вид:

∂ ∂ t c (x , t) = ∂ ∂ x D ∂ ∂ x c (x , t) + f (x , t) . {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)={\frac {\partial }{\partial x}}D{\frac {\partial }{\partial x}}{c(x,\;t)}+f(x,\;t).}

При постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (x , t) = D ∂ 2 ∂ x 2 c (x , t) + f (x , t) , {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)=D{\frac {\partial ^{2}}{\partial x^{2}}}{c(x,\;t)}+f(x,\;t),}

где c (x , t) {\displaystyle c(x,\;t)} - концентрация диффундирующего вещества, a f (x , t) {\displaystyle f(x,\;t)} - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

∂ ∂ t c (r → , t) = (∇ , D ∇ c (r → , t)) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=(\nabla ,\;D\nabla c({\vec {r}},\;t))+f({\vec {r}},\;t),}

где ∇ = (∂ x , ∂ y , ∂ z) {\displaystyle \nabla =(\partial _{x},\;\partial _{y},\;\partial _{z})} - оператор набла , а (,) {\displaystyle (\;,\;)} - скалярное произведение. Оно также может быть записано как

∂ t c = d i v (D g r a d c) + f , {\displaystyle \partial _{t}c=\mathbf {div} \,(D\,\mathbf {grad} \,c)+f,}

а при постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (r → , t) = D Δ c (r → , t) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=D\Delta c({\vec {r}},\;t)+f({\vec {r}},\;t),}

где Δ = ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\displaystyle \Delta =\nabla ^{2}={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}} - оператор Лапласа .

n -мерный случай

N {\displaystyle n} -мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n {\displaystyle n} -мерные версии соответствующих операторов:

∇ = (∂ 1 , ∂ 2 , … , ∂ n) , {\displaystyle \nabla =(\partial _{1},\;\partial _{2},\;\ldots ,\;\partial _{n}),} Δ = ∇ 2 = ∂ 1 2 + ∂ 2 2 + … + ∂ n 2 . {\displaystyle \Delta =\nabla ^{2}=\partial _{1}^{2}+\partial _{2}^{2}+\ldots +\partial _{n}^{2}.}

Это касается и двумерного случая n = 2 {\displaystyle n=2} .

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

Φ = − ϰ ∂ c ∂ x {\displaystyle \Phi =-\varkappa {\frac {\partial c}{\partial x}}} (одномерный случай), j = − ϰ ∇ c {\displaystyle \mathbf {j} =-\varkappa \nabla c} (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

∂ c ∂ t + ∂ Φ ∂ x = 0 {\displaystyle {\frac {\partial c}{\partial t}}+{\frac {\partial \Phi }{\partial x}}=0} (одномерный случай), ∂ c ∂ t + d i v j = 0 {\displaystyle {\frac {\partial c}{\partial t}}+\mathrm {div} \,\mathbf {j} =0} (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
  • Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n {\displaystyle n} -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c {\displaystyle c} в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c (x , t) = ∫ − ∞ + ∞ c (x ′ , 0) c f (x − x ′ , t) d x ′ = ∫ − ∞ + ∞ c (x ′ , 0) 1 4 π D t exp ⁡ (− (x − x ′) 2 4 D t) d x ′ . {\displaystyle c(x,\;t)=\int \limits _{-\infty }^{+\infty }c(x",\;0)c_{f}(x-x",\;t)\,dx"=\int \limits _{-\infty }^{+\infty }c(x",\;0){\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x")^{2}}{4Dt}}\right)\,dx".}

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

− (∇ , D ∇ c (r →)) = f (r →) . {\displaystyle -(\nabla ,\;D\nabla c({\vec {r}}))=f({\vec {r}}).} Δ c (r →) = − f (r →) D , {\displaystyle \Delta c({\vec {r}})=-{\frac {f({\vec {r}})}{D}},} Δ c (r →) = 0. {\displaystyle \Delta c({\vec {r}})=0.}

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и , удовлетворяющее условию u (x , t 0) = φ (x) (− ∞ < x < + ∞) {\displaystyle u(x,\;t_{0})=\varphi (x)\quad (-\infty , где - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области − ∞ ⩽ x ⩽ + ∞ {\displaystyle -\infty \leqslant x\leqslant +\infty } и t ⩾ t 0 {\displaystyle t\geqslant t_{0}} , удовлетворяющее условиям

{ u (x , t 0) = φ (x) , (0 < x < ∞) u (0 , t) = μ (t) , (t ⩾ t 0) {\displaystyle \left\{{\begin{array}{l}u(x,\;t_{0})=\varphi (x),\quad (0

где φ (x) {\displaystyle \varphi (x)} и μ (t) {\displaystyle \mu (t)} - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0 ⩽ x ⩽ l {\displaystyle 0\leqslant x\leqslant l} и − ∞ < t {\displaystyle -\infty , удовлетворяющее условиям

{ u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , {\displaystyle \left\{{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right.}

где и - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u t = a 2 u x x + f (x , t) , 0 < x < l , 0 < t ⩽ T {\displaystyle u_{t}=a^{2}u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f (x , t) = 0 {\displaystyle f(x,\;t)=0} , то такое уравнение называют однородным , в противном случае - неоднородным .

u (x , 0) = φ (x) , 0 ⩽ x ⩽ l {\displaystyle u(x,\;0)=\varphi (x),\quad 0\leqslant x\leqslant l} - начальное условие в момент времени t = 0 {\displaystyle t=0} , температура в точке x {\displaystyle x} задается функцией φ (x) {\displaystyle \varphi (x)} . u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , } 0 ⩽ t ⩽ T {\displaystyle \left.{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right\}\quad 0\leqslant t\leqslant T} - краевые условия. Функции μ 1 (t) {\displaystyle \mu _{1}(t)} и μ 2 (t) {\displaystyle \mu _{2}(t)} задают значение температуры в граничных точках 0 и l {\displaystyle l} в любой момент времени t {\displaystyle t} .

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ( α i 2 + β i 2 ≠ 0 , (i = 1 , 2) {\displaystyle \alpha _{i}^{2}+\beta _{i}^{2}\neq 0,\;(i=1,\;2)} ).

α 1 u x (0 , t) + β 1 u (0 , t) = μ 1 (t) , α 2 u x (l , t) + β 2 u (l , t) = μ 2 (t) . {\displaystyle {\begin{array}{l}\alpha _{1}u_{x}(0,\;t)+\beta _{1}u(0,\;t)=\mu _{1}(t),\\\alpha _{2}u_{x}(l,\;t)+\beta _{2}u(l,\;t)=\mu _{2}(t).\end{array}}}

Если α i = 0 , (i = 1 , 2) {\displaystyle \alpha _{i}=0,\;(i=1,\;2)} , то такое условие называют условием первого рода , если β i = 0 , (i = 1 , 2) {\displaystyle \beta _{i}=0,\;(i=1,\;2)} - второго рода , а если α i {\displaystyle \alpha _{i}} и β i {\displaystyle \beta _{i}} отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция в пространстве D × [ 0 , T ] , D ∈ R n {\displaystyle D\times ,\;D\in \mathbb {R} ^{n}} , удовлетворяет однородному уравнению теплопроводности ∂ u ∂ t − a 2 Δ u = 0 {\displaystyle {\frac {\partial u}{\partial t}}-a^{2}\Delta u=0} , причем D {\displaystyle D} - ограниченная область. Принцип максимума утверждает, что функция u (x , t) {\displaystyle u(x,\;t)} может принимать экстремальные значения либо в начальный момент времени, либо на границе области D {\displaystyle D} .

Примечания

Формулы для расчета температурного поля и теплового потока в частных задачах стационарной и нестационарной теплопроводности получают исходя из математического описания (математической модели) процесса. Основу модели составляет дифференциальное уравнение теплопроводности, которое выводится с привлечением первого закона термодинамики для тел, не совершающих работы, и закона теплопроводности Фурье. Дифференциальное уравнение физического процесса обычно выводится при тех или иных допущениях, упрощающих процесс. Поэтому получаемое уравнение описывает класс процессов только в пределах принятых допущений. Каждая конкретная задача описывается соответствующими условиями однозначности. Таким образом, математическое описание процесса теплопроводности включает дифференциальное уравнение теплопроводности и условия однозначности.

Рассмотрим вывод дифференциального уравнения теплопроводности при следующих допущениях:

  • а) тело однородно и анизотропно;
  • б) коэффициент теплопроводности зависит от температуры;
  • в) деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;
  • г) внутри тела имеются равномерно распределенные внутренние источники теплоты q v = f(x, у, z, т) = const;
  • д) перемещение макрочастиц тела относительно друг друга (конвекция) отсутствует.

В теле с принятыми характеристиками выделяем элементарный объем в форме параллелепипеда с ребрами dx, dy, dz, определенно ориентированный в ортогональной системе координат (рис. 14.1). В соответствии с первым законом термодинамики для тел, не совершающих работы, изменение внутренней энергии dU вещества в выделенном объеме за время dx равно сумме теплоты, поступающей

Рис. 14.1.

в объем вследствие теплопроводности dQ x , и теплоты, выделенной внутренними источниками dQ 2 ".

Из термодинамики известно, что изменение внутренней энергии вещества в объеме dV за время dx равно

где dG = рdV - масса вещества; р - плотность; с - удельная массовая теплоемкость (для сжимаемых жидкостей c = c v (изохорной теплоемкости)).

Количество энергии, выделенное внутренними источниками,

где q v - объемная плотность внутренних источников теплоты, Вт/м 3 .

Тепловой поток, поступающий в объем теплопроводностью, разделим на три составляющих соответственно направлению осей координат: Через противоположные грани теплота будет

отводиться в количестве соответственно Разница между количеством подведенной и отведенной теплоты эквивалентна изменению внутренней энергии вследствие теплопроводности dQ v Представим эту величину как сумму составляющих по осям координат:

Тогда в направлении оси х имеем

Поскольку -

плотности тепловых потоков на поотивоположных гоанях.

Функция q x+dx является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Ограничиваясь двумя первыми членами ряда и подставляя в (14.6), получаем

Аналогичным образом получаем:

После подстановки (14.8)-(14.10) в (14.4) имеем

Подставляя (14.2), (14.3) и (14.11) в (14.1), получаем дифференциальное уравнение переноса теплоты теплопроводностью с учетом внутренних источников:

Согласно закону теплопроводности Фурье записываем выражения для проекций на оси координат плотности теплового потока:

где Х х, Х у, X z - коэффициенты теплопроводности в направлении координатных осей (тело анизотропное).

Подставляя эти выражения в (14.12), получаем

Уравнение (14.13) называют дифференциальным уравнением теплопроводности для анизотропных тел с независимыми от температуры физическими свойствами.

Если принять X = const, а тело изотропным, уравнение теплопроводности принимает вид

Здесь а = Х/(ср), м 2 /с, - коэффициент температуропроводности,

который является физическим параметром вещества, характеризующим скорость изменения температуры в процессах нагревания или охлаждения. Тела, выполненные из вещества с большим коэффициентом температуропроводности, при прочих равных условиях нагреваются и охлаждаются быстрее.

В цилиндрической системе координат дифференциальное уравнение теплопроводности для изотропного тела с постоянными физическими свойствами имеет вид

где г, z, Ф - соответственно радиальная, осевая и угловая координаты.

Уравнения (14.13), (14.14) и (14.15) описывают процесс теплопроводности в самом общем виде. Конкретные задачи отличаются условиями однозначности , т.е. описанием особенностей протекания рассматриваемого процесса.

Условия однозначности. Исходя из физических представлений о теплопроводности можно выделить факторы, влияющие на процесс: физические свойства вещества; размеры и форма тела; начальное распределение температуры; условия теплообмена на поверхности (границе) тела. Таким образом, условия однозначности подразделяются на физические, геометрические, начальные и граничные (краевые).

Физическими условиями задаются физические параметры вещества X, с, р и распределение внутренних источников.

Геометрическими условиями задаются форма и линейные размеры тела, в котором протекает процесс.

Начальными условиями задается распределение температуры в теле в начальный момент времени t = /(х, у, z ) при т = 0. Начальные условия имеют значение при рассмотрении нестационарных процессов.

В зависимости от характера теплообмена на границе тела граничные (краевые) условия подразделяются на четыре рода.

Граничные условия первого рода. Задается распределение температуры на поверхности t n в течение процесса

В частном случае температура поверхности может оставаться постоянной (/ п = const).

Граничные условия первого рода имеют место, например, при контактном нагреве в процессах склеивания фанеры, прессования древесно-стружечных и древесно-волокнистых плит и т.п.

Граничные условия второго рода. Задается распределение значений плотности теплового потока на поверхности тела в течение процесса

В частном случае тепловой поток на поверхности может оставаться постоянным (

Граничные условия третьего рода соответствуют конвективному теплообмену на поверхности. При этих условиях должна задаваться температура жидкости, в которой находится тело, Г ж = /(т), и коэффициент теплоотдачи ос. В общем случае коэффициент теплоотдачи - переменная величина, поэтому должен задаваться закон его изменения а =/(т). Возможен частный случай: / ж = const; а = const.

Граничные условия четвертого рода характеризуют условия теплообмена тел с различными коэффициентами теплопроводности при их идеальном контакте, когда теплота передается теплопроводностью и тепловые потоки по разные стороны поверхности контакта равны:

Принятые физические допущения, уравнение, выведенное при этих допущениях, и условия однозначности составляют аналитическое описание (математическую модель) процессов теплопроводности. Успех использования полученной модели для решения конкретной задачи будет зависеть от того, насколько принятые допущения и условия однозначности адекватны реальным условиям.

Уравнения (14.14) и (14.15) решаются достаточно просто аналитически для одномерного стационарного теплового режима. Решения рассмотрены ниже. Для двумерных и трехмерных стационарных процессов применяются приближенные численные методы

Для решения уравнений (14.13)-(14.15) в условиях нестационарного теплового режима используется ряд методов, рассмотренных подробно в специальной литературе . Известны точные и приближенные аналитические методы, численные методы и др.

Численное решение уравнения теплопроводности осуществляется в основном методом конечных разностей . Выбор того или иного метода решения зависит от условий задачи. В результате решения аналитическими методами получают формулы, применимые для решения круга инженерных задач в соответствующих условиях. Численные методы дают возможность получить температурное поле t=f(x, у, z, т) в виде набора дискретных значений температуры в различных точках в фиксированные моменты времени для конкретной задачи. Поэтому использование аналитических методов предпочтительно, однако это не всегда возможно для многомерных задач и сложных граничных условий.

Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд Потребовав, чтобы функция и(х} t), определяемая формулой (12), удовлетворяла начальному условию, получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно. Так как при то ряд при также сходится абсолютно и равномерно. Поэтому функция и(х, t) - сумма ряда (12) - непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при. Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание. В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее. Пример. Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи. собственные функции Хп(х) = мп пх. При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п\ так что Решение задачи (15)-(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда. Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие. Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци - как решение задачи Задача (8)-(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям { краевой задачи. Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем! Пользуясь начальным условием для v(x, t), Метод Фурье для уравнения теплопроводности находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20). Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)-(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы

Уравнение теплопроводности в однородной среде, как мы видели, имеет вид

Коэффициент внутренней теплопроводности, с - теплоемкость вещества и - плотность. Кроме уравнения (1), нужно иметь в виду начальное условие, дающее начальное распределение температуры и при

Если тело ограничено поверхностью (S), то на этой поверхности мы будем иметь и предельное условие, которое может быть различным, смотря по физическим обстоятельствам. Так, например, поверхность (S) может поддерживаться при определенной температуре, которая может и меняться с течением времени. В этом случае предельное условие сводится к заданию функции U на поверхности (S), причем эта заданная функция может зависеть и от времени t. Если температура поверхности не фиксирована, но имеется лучеиспускание в окружающую среду данной температуры то по закону Ньютона, правда, далеко не точному, поток тепла через поверхность (S) пропорционален разности температур окружающего пространства и поверхности тела (S). Это дает предельное условие вида

где коэффициент пропорциональности h называется коэффициентом внешней теплопроводности.

В случае распространения тепла в теле линейных размеров, т. е. в однородном стержне, который мы считаем расположенным вдоль оси вместо уравнения (1) мы будем иметь уравнение

При такой форме уравнения не учитывается, конечно, тепловой обмен между поверхностью стержня и окружающим пространством.

Уравнение (S) можно получить также из уравнения (1), предполагая U не зависящей от . Начальное условие в случае стержня

Решение дифференциального уравнения теплопроводности при действии мгновенного сосредоточенного источника в неограниченной среде называется фундаментальным решением.

Мгновенный точечный источник

Для бесконечного тела, в начале координат которого действует мгновенный точечный источник, решение дифференциального уравнения теплопроводности следующее:

где T - температура точки с координатами x,y,z; Q - количество тепла, выделившееся в момент t = 0 в начале координат; t - время, прошедшее с момента введения тепла; R - расстояние от начала координат, где действует источник, до рассматриваемой точки (радиус - вектор). У равнение (4) является фундаментальным решением уравнения теплопроводности при действии мгновенного точечного источника в бесконечном теле.

В любой момент t ? 0 температура самого источника (R = 0) отлична от нуля и с течением времени уменьшается по закону t -3/2 , оставаясь выше температур других точек тела. Вместе с удалением от источника температура понижается по закону нормального распределения exp(-R 2 /4at). Изотермическими поверхностями являются сферы с центром в источнике, и температурное поле в данный момент времени зависит лишь от радиуса. В начальный момент времени (t = 0) температура не определена (T = ?), что связано со схемой сосредоточенного источника, в котором в бесконечно малом объеме в начальный момент времени содержится конечное количество тепла Q.

На основе решения для бесконечного тела (4) можно вывести уравнение температурного поля для схемы полубесконечного тела, которая применяется для описания тепловых процессов в массивных изделиях. Пусть в полубесконечном теле, ограниченном поверхность S - S действует мгновенный точечный источник Д (рис. 4). Для массивных тел тепловые потоки внутри значительно больше потока теплоотдачи с поверхности. Поэтому поверхность полубесконечного тела можно считать адиабатической границей, для которой (см.п. 1.4)

Дополним полубесконечную область z > 0 до бесконечной, дбавив область z < 0. В образовавшемся объеме введем дополнительный (фиктивный) источник нагрева Ф(-z), идентичный действительному источнику Д(z), но расположенный симметрично по другую сторону границы S. На рис. 4 приведено распределение температур в бесконечном теле отдельно для действительного (T Д) и фиктивного (T ф) источников. Суммарная температура от обоих источников T = T Д + T ф. При этом на границе, что соответствует определению адиабатической границы (5). Если действительный источник находится на поверхности полубесконечного тела, то фиктивный с ним совпадает, и T=2T Д. Тогда температурное поле мгновенного точечного источника на поверхности полубесконечного тела

По такой же схеме моделируется и изотермическая граница (граничное условие 1-го рода) T S =0, но в этом случае T = T Д - T Ф. Следует подчеркнуть, что источник нагрева не может действовать на изотермической поверхности.

Графическое изображение температурного поля (6) требует четкого понимания пространственного положения поверхности, на которой строится распределение температуры. В декартовой системе координат (x, y, z) контрольными сечениями полубесконечного тела при действии точечного источника являются плоскости xy, xz и yz (рис. 5, а). Для полубесконечного тела изотермические поверхности являются полусферами (температура зависит от радиуса - вектора R). В плоскости xy изотермы, как сечение поверхности плоскостью

z=const, являются окружностями, а в других плоскостях - полуокружностями (рис. 5, б). Температурное поле мгновенного точечного источника в разные моменты времени представлено на рис. (6) (см. П 1.1.). На рисунке температура графически ограничена значением T=1000K|.

Температура в любой точке вне источника сначала возрастает, а затем убывает (рис.1.3). Момент достижения максимального значения температуры в данной точке найдется из условия

Дифференцируя выражение (6) по времени, получаем формулу для определения времени, когда температура максимальна

Максимальные темперы точек полубесконечного тела при действии точечного источника уменьшаются с расстоянием как R 3 .