Типы связей стабилизирующих липопротеин. Биохимия липопротеидов простыми словами


Основными липидами плазмы крови человека являются триглицериды, фосфолипиды и эфиры холестерина. Эти соединения представляют собой эфиры длинноцепочечных жирных кислот и в качестве липидного компонента входят все вместе в состав липопротеинов. Жир

ные кислоты присутствуют в плазме также в свободной (неэстерифициро- ванной) форме.
Местом хранения жирных кислот служит жировая ткань, а утилизируются они в печени и мышцах, куда транспортируются в форме свободных жирных кислот (СЖК). Жирные кислоты, в особенности - пальмитиновая, олеиновая и линолевая, - откладываются в жировой ткани в виде триглицеридов. Скорость мобилизации триглицеридов определяется работой гормончувствительной липазы, активность которой возрастает под действием некоторых гормонов, таких, как норадреналин и глюкокортикоиды. Липолиз приводит к высвобождению в плазму жирных кислот и глицерина и усиливается в состоянии острого стресса, при длительном голодании и недостатке инсулина.
Триглицериды (или триацилглицериды) представляют собой эфиры жирных кислот и глицерина. Синтез триглицеридов в печени и жировой ткани осуществляется по глицерофосфатному пути, тогда как в тонком кишечнике триглицериды образуются, главным образом, за счет непосредственной эстерификации всасываемых из пищи моноглицеридов. Ресинтезируемые в клетках тонкого кишечника триглицериды выходят в кишечные лимфатические сосуды в форме хиломикронов, а затем поступают в кровоток через грудной лимфатический проток. В норме всасывается свыше 90% триглицеридов. Это означает, что ежедневно в кровь попадает 70-150 г экзогенных триглицеридов. В тонком кишечнике происходит образование и так называемых эндогенных триглицеридов, которые синтезируются из эндогенных жирных кислот, однако их главным источником является печень, откуда они секретируются в форме липопротеинов очень низкой плотности (ЛПОНП). Спектр остатков жирных кислот, обнаруживаемых в триглицеридах и ЛПОНП, в значительной степени зависит от набора жирных кислот триглицеридов, поступающих с пищей.
Два основных фосфолипида, которые присутствуют в плазме, - это фосфатидилхолин (лецитин) и сфингомиелин. Синтез фосфолипидов происходит почти во всех тканях, но главным источником фосфолипидов плазмы служит печень. Фосфолипиды являются неотъемлемым компонентом всех клеточных мембран. Между плазмой и эритроцитами постоянно происходит обмен лецитином и сфингомиелином. Оба эти фосфолипида присутствуют в плазме в качестве составных компонентов ли- попротеинов, где они играют ключевую роль, поддерживая в растворимом состоянии неполярные липиды, такие, как триглицериды и эфиры холестерина.
Холестерин - это стерин, содержащий стероидное ядро из четырех колец и гидроксильную группу. Это соединение обнаруживается в организме как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин -
компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина. Большинство тканей обладает способностью к синтезу холестерина, но в норме практически весь холестерин синтезируется в печени и дистальной части тонкого кишечника.
Ранней стадией синтеза холестерина является превращение ацетата в мевалоновую кислоту. Фермент, определяющий скорость этого процесса, называется 3-гидрокси-3-метилглутарил-коэним А-редуктаза (ГМГ-КоА-редуктаза). Активность этого фермента регулируется по принципу обратной связи с помощью конечного продукта реакции - холестерина. Основные метаболиты холестерина, - желчные кислоты,

  • синтезируются исключительно в печени. Ключевым ферментом в этом случае служит холестерин-7-альфа-гидроксилаза.
Результаты экспериментов по изучению изменений плазмаспецифи- ческой активности после введения радиоактивного холестерина свидетельствуют о существовании в организме трех пулов холестерина. Холестерин каждого из пулов обменивается с холестерином плазмы, причем скорости установления равновесия сильно различаются. Быстро обменивающийся пул представлен холестерином липопротеинов плазмы, эритроцитов, печени, кишечника и некоторых других внутренних органов и содержит 20-25 г чистого холестерина. Количество холестерина в промежуточном пуле составляет около 10-12 г. К этому пулу относится холестерин периферических тканей, таких, как кожа и жировая ткань. Медленно обменивающийся пул содержит наибольшее количество холестерина (35-37 г) и включает холестерин разных тканей, таких, как скелетные мышцы и стенки сосудов . В стационарном состоянии метаболизма поступление синтезируемого и всасываемого холестерина в быстро обменивающийся пул сбалансировано выведением холестерина путем фекальной экс-креции. Независимо от того, сколько холестерина попадает в организм с пищей, усваивается в среднем 35-40%, причем процесс всасывания опосредуется лимфатической системой. Всасывание холестерина пищи и реабсорбция жирных кислот играют важную роль в организации скорости синтеза холестерина клетками печени . Синтез желчных кислот опре-деляется эффективностью их циркуляции между печенью и тонким кишечником и поэтому увеличивается при любом воздействии, которое затрудняет их реабсорбцию.
Более двух третей холестерина плазмы эстерифицировано преимущественно линолевой и олеиновой кислотами. Эти эфиры образуются, в основном, в плазме под действием фермента лецитин-холестерин- ацил-трансферазы (ЛХАТ). Относительно небольшой вклад в этот процесс вносит также фермент тонкого кишечника и печени - АКАТ. Природа эфиров холестерина зависит в значительной степени от жирнокис
лотного состава лецитина плазмы или, иными словами, - от типа жиров в пище. В отличие от своих эфиров, свободный холестерин плазмы легко обменивается с холестерином клеточных мембран.
В норме уровень общего холестерина (ОХС) плазмы крови варьируется от 4 до 6,5 ммоль/л, но, в отличие от уровня триглицеридов, не воз- рас-тает резко после потребления жирной пищи.
Все липиды, за исключением свободных жирных кислот, попадают в плазму в форме макромолекулярных комплексов, называемых липоп- ротеинами. Эти комплексы содержат специфические белковые компоненты аполипопротеины (апопротеины или просто апо), взаимодействующие с фосфолипидами и свободным холестерином и образующие полярную наружную оболочку, которая экранирует расположенные внутри неполярные триглицериды и эфиры холестерина.
С помощью ультрацентрифугирования плазмы крови, взятой у донора после приема пищи, можно выделить шесть классов липопротеи- нов. Все они представляют собой сферические частицы, различающиеся по размеру и состоящие из смеси белков, фосфолипидов, триглицеридов, свободного и эстерифицированного холестерина, относительные количества которых варьируются в разных классах липопротеинов. Так, основная часть холестерина обнаруживается в липопротеинах низкой плотности (ЛПНП), а существенно меньшая - в ЛПОНП и липопроте- инах высокой плотности (ЛПВП). В отличие от холестерина, эндогенные триглицериды переносятся преимущественно в составе ЛПОНП. Хиломикроны служат для переноса триглицеридов в первые часы после приема пищи и в норме через 12 ч голодания полностью исчезают из плазмы. Таким образом, измерение содержания общего холестерина и триглицеридов в плазме или сыворотке крови дает сумму вкладов каждого класса липопротеинов. Изменение количества сывороточных липидов обычно отражает изменения либо в концентрации липопротеи- нов, либо в соотношении уровней липопротеинов различных классов. В норме концентрация ремнантных частиц, или липопротеинов промежуточной плотности (ЛППП), в плазме относительно низка и, как правило, их вкладом пренебрегают, но он может стать определяющим при измерении содержания холестерина и три-глицеридов в крови пациентов с некоторыми формами гиперлипидемии.
Прежде чем описывать метаболизм различных классов липопротеинов, необходимо сделать краткий обзор физических свойств как самих этих частиц, так и входящих в их состав аполипопротеинов. Липоротеины плазмы различаются по скорости флотации, гидратированной плотности, размеру и электрофоретической подвижности. В настоящее время наиболее распространена классификация липопротеинов, основанная на различиях в их плотности, что используется для разделения этих частиц методом ультрацентрифугирования. Кроме того, липопротеины суще
ственно различаются и по содержанию аполипопротеинов, или апоп- ротеинов .
Апопротеины выполняют три основные функции: 1) взаимодействуя с фосфолипидами, помогают солюбилизировать эфиры холестерина и три-глицериды; 2) регулируют реакции липидов липопротеинов с ферментами, такими, как ЛХАТ, липопротеинлипаза и печеночная липаза; 3) связываются с рецепторами на поверхности клеток, определяя, таким образом, места захвата и скорость деградации других компонентов, в частности - холестерина. Связывание апопротеинов с липидами осуществляется, главным образом, за счет гидрофобных взаимодействий между жирнокислотными цепями фосфолипидов и неполярными областями апопротеинов. Ионные взаимодействия между полярными группами головок фосфолипидов и парами противоположно заряженных аминокислот апопротеинов играют вторичную стабилизирующую роль.
Аполипопротеины семейства А, - апо А-I и апо А-II, - это основные белковые компоненты ЛПВП. Существуют данные, свидетельствующие о том, что когда оба апопротеина А находятся рядом, как это бывает в ЛПВП, апо А-II усиливает липидсвязывающие свойства апо А-I. Другая функция апо А-I - это активация фермента ЛХАТ
Апопротеин В, или апо В, отличается гетерогенностью и различиями в молекулярном весе; апо ВЮ0 обнаруживается, главным образом, в хиломикронах, ЛПОНП и ЛПНП, а апо В48 - только в хиломикронах. При этом апо ВЮ0 служит лигандом рецептора ЛПНП, апо В48 - нет.
К апопротеинам С относятся, по крайней мере, три индивидуальных апопротеина, которые являются основными компонентами ЛПОНП и минорным компонентом ЛПВП. Считается, что апо С-II активирует фермент липопротеинлипазу.
Апопротеин Е, - компонент ЛПОНП, ЛППП и ЛПВП, - поступает в плазму преимущественно в составе новосинтезированных ЛПВП. Апо Е выполняет несколько функций, в том числе - рецептор-опосредован- ный перенос холестерина между тканями и плазмой.
Из других апопротеинов следует упомянуть апо D, минорный компонент ЛПВП; апо А-IV, обнаруженный в хиломикронах кишечника; а также апо (а), один из белковых компонентов особого липопротеина (а), или ЛП (а) . В настоящее время в литературе имеются детальные обзоры современных данных по структуре и функциям аполипопротеинов .
Липопротеины отдельных классов принимают различное участие в атерогенезе, в связи с чем необходимо привести их краткую характеристику.
Хиломикроны - самые крупные липопротеиновые частицы, имеют диа-метр от 100 до 1000 нм и содержат преимущественно триглицери
ды, а также небольшие количества фосфолипидов, свободного холестерина, его эфиров и белка. Основной функцией хиломикронов является перенос пищевых триглицеридов из кишечника, где происходит их всасывание, в кровяное русло.
ЛПОНП (пре-в-липопротеины) - по структуре и составу сходны с хиломикронами, но обладают меньшими размерами, от 25 до 100 нм, и содержат меньше триглицеридов, но больше холестерина, фосфолипидов и белка. От хиломикронов ЛПОНП отличаются по месту синтеза и источнику транспортируемых триглицеридов. Так, ЛПОНП образуются, в основном, в печени и служат для переноса эндогенных триглицеридов .
Скорость образования ЛПОНП растет при увеличении потока свободных жирных кислот, поступающих в печень, а также в ситуациях, когда в печени возрастает скорость синтеза эндогенных жирных кислот, что происходит при попадании в организм большого количества углеводов.
Частицы ЛПОНП варьируются по размеру. В результате липолиза образуются ЛПОНП небольшого размера, - их называют ремнантными ЛПОНП или липопротеинами промежуточной плотности (ЛППП), - которые являются промежуточным продуктом в процессе превращения ЛПОНП в ЛПНП. При гипертриглицеридемии наблюдается возрастание не только числа, но также и размеров ЛПОНП, что, вероятно, может служить причиной другого характерного признака данного заболевания - снижения уровня ЛПНП.
ЛПНП ф-липопротеины) - главный из классов липопротеинов плазмы, переносящих холестерин. Эти частицы отличаются от своих предшественников ЛПОНП значительно более низким содержанием триглицеридов и присутствием только одного апо В100 из разнообразных апопротеинов, обнаруживаемых в ЛПОНП. Катаболизм ЛПНП зависит как от факторов среды, например - от типа потребляемых жиров, так и от генетических факторов - мутаций генов, кодирующих рецептор ЛПНП и апо В.
ЛПВП (а-липопротеины) по диапазону плотности подразделяются на подклассы ЛПВП2 и ЛПВП3. Свыше 90% белка ЛПВП представлено белком апо А. Синтезируются ЛПВП в печени и тонком кишечнике. Накопление эфиров холестерина в ретикуло-эндотелиальной системе пациентов, у которых отсутствуют ЛПВП (болезнь Танжера), говорит о том, что в норме ЛПВП играют ведущую роль в удалении тканевого холестерина.
ЛП (а) - крупнее ЛПНП, но обладают по сравнению с ними большей плотностью и имеют электрофоретическую подвижность, свойственную ЛПОНП. По липидному составу ЛП (а) не отличается от ЛПНП, но имеют больше белка, в том числе собственный апо (а) - по
лиморфный белок, обладающий высокой степенью гомологии с плаз- миногеном и содержащий большее количество углеводов. Имеются данные, что ЛП (а) образуются исключительно в печени, независимо от метаболизма ЛПОНП .
Метаболизм липопротеинов - это сложный динамический и во многом не изученный процесс, включающий в себя как разнообразные перемещения липидов и апопротеинов между отдельными классами ли- попротеинов, так и целый ряд реакций, катализируемых ферментами. Эти взаимодействия приводят, в том числе, к рецептор-опосредованно- му поступлению холестерина в клетку или к его удалению из клетки .
Здесь уместно напомнить, что функция апопротеинов не ограничивается только тем, что они образуют с липидами растворимые и, следовательно, транспортируемые кровью комплексы. Установлено, что некоторые апопротеины выполняют коэнзимную роль, активируя отдельные реакции липидного обмена. В частности, апо А-I активирует реакцию, осуществляемую ЛХАТ В ходе этой реакции, как известно, происходит эстерификация свободного холестерина в плазме крови. Имеются данные, что реакция ЛХАТ катализируется также апо С-I.
Апо С-II оказался необходимым компонентом для реакций, катализируемых липопротеинлипазами. Так как при действии липопротеин- липазы происходит расщепление триглицеридов хиломикронов и ЛПОНП, то эта реакция приобретает особое значение как начальная ступень в катаболизме названных липопротеинов .
В 1985 году американским ученым J.Goldstein и M.Brown была присуждена Нобелевская премия за открытие рецептора ЛПНП и установление причины семейной гиперхолестеринемии . Они обнаружили, что основная роль рецептора ЛПНП заключается в том, чтобы обеспечить все клетки организма доступным источником холестерина, который необходим для синтеза клеточных мембран, а определенные органы используют его также и в качестве субстрата для образования некоторых продуктов своего метаболизма, например, желчных кислот, половых гормонов, кортикостероидов. Поэтому клетки печени, половых желез и надпочечников содержат большое количество рецепторов ЛПНП. Печень, в силу своего размера, является основным местом ре- цептор-опосредованного катаболизма ЛПНП. Рецепторы ЛПНП связывают также ремнантные ЛПОНП (или ЛППП) и один из подклассов ЛПВП, имеющий белок апо-Е .
Координированная регуляция экспрессии рецептора ЛПНП и активности ГМГ-КоА-редуктазы обеспечивает функционирование гомеостатического механизма снабжения холестерином таких клеток, как гепа- тоциты, повседневно перерабатывающих большие его количества. Фармакологические средства, конкурентно ингибирующие ГМГ-КоА-ре-
дуктазу, блокируют эндогенный синтез холестерина и посредством этого стимулируют экспрессию рецептора ЛПНП, что приводит к снижению уровня холестерина ЛПНП в плазме крови.
Рецептор ЛПВП был идентифицирован в культивируемых фиброб- ластах и гладкомышечных клетках. Экспрессия этого рецептора увеличивается при нагрузке клеток холестерином. Кроме того, описаны два других рецептора липопротеинов , хотя их вклад в метаболизм липопротеинов in vivo не установлен.
В упрощенном виде внутриклеточный и тканевой метаболизм липопротеинов разных классов можно представить следующим образом. Хи- ломикроны доставляют липиды пищи в плазму крови через лимфу. Под воздействием внепеченочной липопротеинлипазы, активируемой а- по С-II, хиломикроны в плазме превращаются в ремнанты, которые захватываются рецепторами гепатоцитов, распознающими поверхностный апо-Е. Эндогенные триглицериды переносятся ЛПОНП из печени в плазму, где они, как и хиломикроны, претерпевают частичную деградацию до ремнантных ЛПОНП, или ЛППП. В свою очередь, ЛППП либо захватываются рецепторами ЛПНП, распознающими апо Е или апо ВЮ0, либо превращаются в ЛПНП, содержащие апо ВЮ0, но уже не имеющие апо Е. В этом процессе может принимать участие печеночная липаза. Катаболизм ЛПНП протекает двумя основными путями, один из которых связан с рецепторами ЛПНП, а второй - с печеночной триг- лицеридлипазой. ЛПВП имеют сложное происхождение: их липидный компонент включает или свободный холестерин и фосфолипиды, высвобождающиеся при липолизе хиломикронов и ЛПОНП, или свободный холестерин, поступающий из периферических клеток, в то время как основной апопротеин ЛПВП, апо А-I, синтезируется и в печени, и в тонком кишечнике. Новосинтезированные частицы ЛПВП в плазме представлены подклассом ЛПВП3, но, в конечном итоге, под воздействием ЛХАТ, активируемой апо А-I , они превращаются в ЛПВП2 . К сожалению, мы не располагаем пока точными данными о последовательности сборки липопротеиновых частиц, не говоря уже о механизмах этого процесса.
Таблица 1.1
Пределы колебаний содержания общего холестерина (ОХС), триглицеридов (ТГ), ХС-ЛПНП и ХС-ЛПВП в плазме крови (в ммоль/л) в норме .

Возраст, годы

ОХС

ТГ

ХС-ЛПНП

ХС-ЛПВП

0-19

3.2-5.2

0.4-1.5

1.7-3.4

1.0-1.9

20-29

3.2-5.9

0.5-2.1

1.8-4.3

0.8-1.7

30-39

3.7-6.8

0.6-3.2

2.1-4.9

0.8-1.7

40-49

4.0-7.0

0.6-3.5

2.3-5.0

0.8-1.7

50-59

4.1-7.2

0.7-3.3

2.3-5.2

0.8-1.7

По завершении процессов всасывания , когда все хиломикроны будут извлечены из плазмы крови, более 95% всех липидов плазмы крови оказываются представленными липопротеинами. Это частицы значительно мельче, чем хиломикроны, но по составу практически подобны им, т.к. включают триглицериды, холестерол, фосфолипиды и белок. Общая концентрация липопротеинов в плазме крови составляет приблизительно 700 мг на 100 мл плазмы, или 700 мг/дл.

Виды липопротеинов . Помимо хиломикронов, которые являются очень крупными липопротеинами, существуют четыре основные типа липопротеинов, классифицируемых по плотности, определяемой путем ультрацентрифугирования:
(1) липопротеины очень низкой плотности , в которых в высокой концентрации присутствуют триглицериды и в умеренной - как холестерол, так и фосфолипиды;
(2) липопротеины промежуточной плотности , из которых часть триглицеридов извлечена, а потому представленность холестерола и фосфолипидов соответственно увеличена;

(3) липопротеины низкой плотности (ЛПНП ), получаемые из группы липопротеинов промежуточной плотности после извлечения почти всех триглицеридов при оставшейся особенно высокой концентрации холестерола и умеренной концентрации фосфолипидов;
(4) липопротеины высокой плотности (ЛПВП ), с высокой концентрацией белка (около 50%), но при значительно меньшей концентрации холестерола и фосфолипидов.

Образование и функция липопротеинов . Почти все липопротеины образуются в печени, являющейся, кроме того, местом, где синтезируется большая часть холестерола, фосфолипидов и триглицеридов, поступающих потом в плазму крови. Кроме того, липопротеины высокой плотности в маленьких количествах образуются эпителиоцитами кишечника во время всасывания жирных кислот из кишечника.

Основной функцией липопротеинов является транспорт липидных компонентов к тканям. Липопротеины очень низкой плотности доставляют триглицериды, синтезируемые печенью, главным образом к жировой ткани. Другие липопротеины особенно важны на разных этапах транспорта фосфолипидов и холестерола из печени к периферическим тканям или, наоборот, с периферии в печень. Далее в этой главе мы подробнее рассмотрим проблемы транспорта холестерола в связи с такой болезнью, как атеросклероз, развитие которого связано с жировым повреждением внутренней поверхности стенки артерий.
Жиры в большом количестве откладываются в жировой ткани и печени, поэтому жировую ткань называют жировым депо.

Главной функцией жировой ткани является создание запасов триглицеридов, которые могут быть использованы организмом в качестве источника энергии. Менее значимой функцией является обеспечение теплоизоляции тела.

Жировые клетки (адипоциты) . Жировые клетки жировой ткани являются измененными фибробластами, которые запасают почти чистые триглицериды в количествах, составляющих от 80 до 95% объема всей клетки. Триглицериды внутри клеток содержатся главным образом в жидкой форме. Если ткани подвергаются длительному охлаждению, то цепочки жирных кислот, входящих в состав триглицеридов, через несколько недель становятся либо короче, либо в них увеличивается количество ненасыщенных связей, снижающее их точку плавления, что способствует сохранению липидов в жидкой форме. Это особенно важно, поскольку только пребывая в жидкой форме, они могут гидролизоваться и транспортироваться из клеток.
Жировые клетки синтезируют очень небольшие количества жирных кислот и триглицеридов из углеводов. Эта функция дополняет синтез жиров в печени.

Липопротеины - это сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из триглицеридов (ТРГ) и эфиров холестерина (ЭХС) и амфифильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки.

Белки оболочки называются апобелками. Холестерин (ХС) обычно занимает промежуточное положение между оболочкой и сердцевиной. Компоненты частицы связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга.

Основная роль липопротеинов – транспорт липидов, поэтому обнаружить их можно в биологических жидкостях.

При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность.

Липопротеины разделяют по плотности методом ультрацентрифугирования, при этом они не осаждаются, а всплывают (флотируют). Мерой всплывания является константа флотации, обозначаемая S f (сведберг флотации). В соответствии с этим показателем различают следующие группы липопротеинов:

Липопротеины можно разделить и методом электрофореза. При классическом щелочном электрофорезе разные липопротеины ведут себя по-разному. При помещении липопротеинов в электрическое поле хиломикроны остаются на старте. ЛОНП и ЛПП можно обнаружить во фракции пре-глобулинов, ЛНП - во фракции -глобулинов, а ЛВП - -глобулинов:

Определение липопротеинового спектра плазмы крови применяется в медицине для диагностики атеросклероза.

Все эти липопротеины отличаются по своей функции.

1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень.

2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань.

3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани.

4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью.

При определении содержания в крови липопротеинов различной плотности их обычно разделяют методом электрофореза. При этом ХМ остаются на старте, ЛОНП оказываются во фракции пре-глобулинов, ЛНП и ЛПП находят во фракции -глобулинов, а ЛВП -  2 -глобулинов. Если в крови повышено содержание -глобулинов (ЛНП) - это означает, что холестерин откладывается в тканях (развивается атеросклероз).

Общая характеристика апопротеинов в составе липопротеинов плазмы крови

Апопротеин

Липопротеин

Мол. масса

Свойства

ЛПВП, хиломикроны

Активатор ЛХАТ

ЛПВП, хиломикроны

Два одинаковых мономера, связанных через дисульфидный мостик

ЛПНП, ЛПОНП, ЛППП

Лиганд для рецептора к ЛПНП; синтезируется в печени

Хиломикроны и обломки хиломикронов

Синтезируется в кишечнике

ЛПОНП, ЛПВП

Возможный активатор ЛХАТ (?)

ЛПОНП, ЛПНП, хиломикроны

Активатор внепеченочной липопротеинлипазы

ЛПОНП, ЛПВП, хиломикроны

Различные формы, содержащие сиаловую кислоту

Белок, переносящий ЭХ

ЛПОНП, ЛПВП, хиломикроны, обломки хиломикронов

Лиганд для рецепторов, взаимодействующих с обломками ХМ

Липопротеины – это комплекс транспортных форм липидов (жиров и жироподобных веществ). Если не углубляться в химические термины, то в нестрогом смысле липопротеины – это сложные соединения, создавшиеся на основе жиров и белков с гидрофобными и электростатическими взаимодействиями.

Липиды не растворяются в воде, по сути являются молекулами с гидрофобным ядром, потому не могут переноситься кровью в чистом виде. Жир синтезируется в тканях организма – печени, кишечника, но для его транспорта необходимо включение жиров с помощью белков в состав липопротеинов.

Наружный слой или оболочка липопротеина состоит из белков, холестерина и фосфолипидов; она гидрофильная, поэтому липопротеин легко связывается с плазмой крови. Внутренняя часть или ядро состоит из эфиров холестерина, триглицеридов, высших жирных кислот и витаминов.

Липопротеины в стабильной концентрации поддерживают синтез и секрецию жировых и апобелковых компонентов (апобелками называют белки-стабилизаторы в составе липопротеинов).

Классификация липопротеинов проводится по разным основаниям с учетом химических, биологических и физических свойств и различий. Самая распространенная и имеющая практическое применение в медицине классификация основана на выявлении соотношения липидов и белков и, как следствие, плотности. Плотность определяется по результатам ультрацентрифугирования.

По плотности и поведению в гравитационном поле выделяют следующие липопротеиновые классы:

  1. Хиломикроны — самые легкие и крупные частицы; образуются в клетках кишечника и имеют в составе до 90 процентов липидов;
  2. Липопротеины очень низкой плотности; образуются в печени из углеводов;
  3. Липопротеины низкой плотности; образуются в русле крови из липопротеинов очень низкой плотности через стадию липопротеинов промежуточной плотности.
  4. Липопротеины высокой плотности – самые мелкие частицы; образуются в печени и имеют в составе до 80 процентов белков.
  5. Химический состав всем липопротеинов одинаков; разнятся пропорции – соотношения составляющих липопротеин веществ относительно друг друга.

По другой классификации липопротеины делятся на свободные, которые растворяются в воде, и несвободные, которые в воде не растворяются. Липопротеины плазмы, сыворотки крови растворимы в воде. Липопротеины мембранных стенок клеток, нервных волокон нерастворимы в воде.

Биохимический анализ крови назначается для сбора сведений об обмене веществ в организме, качестве работы внутренних органов и систем человека, уровне макроэлементов – белков, жиров, углеводов. Биохимический анализ делают в рамках медицинского обследования на скрытые заболевания и патологии. Он позволяет выявить проблему еще до появления первых симптомов болезни.

Один из рассматриваемых параметров биохимического анализа крови – липопротеины различной плотности – компоненты жирового обмена.

Если выявлено, что в крови повышено содержание липопротеинов низкой плотности, это означает, что в организме есть «плохой» холестерин и требуется дополнительное обследование на предмет выявления атеросклероза.

По показателям липопротеинов различной плотности выводят значение содержания в крови общего холестерина. Для оценки состояния сосудов важнее показатели отдельного взятых липопротеинов низкой плотности, чем общего холестерина.

Чтобы результаты биохимического анализа крови были достоверными, необходимо за 24 часа прекратить прием алкоголя, сильнодействующих лекарственных средств, за 12 часов не есть ничего и не пить подслащенные напитки, за 6 часов – не курить и не пить ничего, кроме воды.

Результаты анализа могут сильно отличаться от номы при отсутствии заболеваний внутренних органов на фоне беременности, в течение полутора-двух месяцев после родов, перенесенного недавнего инфекционного заболевания, сильного отравления, острой респираторной инфекции. В этом случае показана повторная сдача анализа после устранения препятствующих факторов.

Для получения более развернутого результата по показателям содержания липопротеинов в рамках диагностики сердечно-сосудистых заболеваний назначают липидограмму крови. Она показывает, сколько и какие липопротеины содержатся в крови, а также говорит об уровне холестерина и триглицеридов.

Функции липопротеинов в крови и плазме крови

Общая функция всех липопротеинов – транспорт липидов. Они переносят насыщенные мононенасыщенные жирные кислоты для получения их них энергии; полиненасыщенные жирные кислоты для синтеза гормонов – стероидов, эйкозаноидов; холестерин и фосфолипиды для использования их в качестве важного составного элемента клеточных мембран.

Поступающие жиры и углеводы обязательно должны расщепляться и транспортироваться по системам организма для усвоения или накопления.

  • Хиломикроны переносят экзогенный жир из кишечника в слои разной ткани, преимущественно в жировую ткань и экзогенный холестерин из кишечника в печень.
  • Липопротеины очень низкой плотности переносят эндогенный жир из печени в жировую ткань.
  • Липопротеины низкой плотности транспортируют эндогенный холестерин в ткани.
  • Липопротеины высокой плотности удаляют (выводят) холестерин из тканей в печень, из клеток печени холестерин выводится с желчью.

Липопротеины очень низкой и низкой плотности считаются атерогенными, то есть вызывающими при повышении их концентрации в крови атеросклероз. При атеросклерозе излишек жира, «плохого» холестерина выстилают сосудистые стенки изнутри, слипаются и прикрепляются к стенкам сосудов. Это приводит к повышение кровяного давления за счет сужения сосудистого просвета, снижению упругости стенок сосудов, образованию тромбов.

Эндогенные жиры синтезируются в организме, экзогенные жиры организм получает с пищей.

Без участия липопротеинов невозможен транспорт жирорастворимых витаминов: витаминов групп А, Е, К, D.

Разница между липопротеинами и липопротеидами

Липопротеины и липопротеиды – разные варианты написания одного и того же слова, обозначающего транспортную форму липидов. Оба варианта являются правильными, но чаще встречается написание «липопротеины».

Нарушение транспорта липидов

При нарушениях транспорта липидов и липидного обмена снижается энергетический потенциал организма, ухудшается терморегуляционная способность. Помимо этого, ухудшается передача нервных импульсов, снижается скорость ферментивных реакций.

Нарушение липидного обмена происходит либо на стадии образования, либо на стадии утилизации липопротеинов: в первом случае говорят о гипопротеинемии, во втором – о гиперпротеинемии.

Первичные причины нарушения липидного обмена – генетическое мутации. Вторичные причины – цирроз (дистрофия с последующим некрозом тканей печени), гипертиреоз (гиперфункция щитовидной железы), пиелонефрит или почечная недостаточность, сахарный диабет, желчекаменная болезнь, ожирение.

Временные нарушения вызываются приемом некоторых медицинских препаратов и их групп: инсулин, фенитоин, глюкокортикоиды, — а также большого количества алкоголя.

Cтроение липопротеина


Структуру транспортных липопротеинов можно сравнить с орехом, который имеет скорлупу и ядро. Поверхность липопротеиновой частицы («скорлупа») гидрофильна и сформирована белками, фосфолипидами и свободным холестеролом. Триацилглицеролы и эфиры холестерола составляют гидрофобное ядро. Липопротеины являются структурами, которые различаются по молекулярной массе, процентному содержанию отдельных липидных компонентов, соотношению белков и липидов. Относительно постоянный уровень циркулирующих в крови липопротеинов поддерживают процессы синтеза и секреции липидных и апобелковых компонентов, активного транспорта липидов между липопротеиновыми частицами и наличие пула свободных апобелков крови, специфический транспорт плазменных белков, изменения в составе липопротеинов в результате процессов, активируемых гепаринзависимой липопротеидлипазой (КФ 3.1.1.34), печеночной триацилглицероллипазой (КФ 3.1.1.3.), фосфатитдилхолин‑холестерол-ацилтрансферазой (КФ 2.3.1.43.), удалением из циркуляции путем интернализации как липопротеинов, так и их белковых компонентов.

Классы липопротеинов

Различают четыре основных класса липопротеинов:

  • липопротеины высокой плотности (ЛПВП, α-липопротеины, α-ЛП);
  • липопротеины низкой плотности (ЛПНП, β-липопротеины, β-ЛП);
  • липопротеины очень низкой плотности (ЛПОНП, пре-β-липопротеины, пре-β-ЛП);
  • хиломикроны (ХМ).

Хиломикроны и ЛПОНП ответственны, в первую очередь, за перенос жирных кислот в составе триацилглицеролов. Липопротеины высокой и низкой плотности - за транспорт свободного холестерола и жирных кислот в составе его эфиров. Концентрация и соотношение количества транспортных липопротеинов в крови играют ведущую роль в возникновении такой распространенной сосудистой патологии, как атеросклероз . Свойства и функции липопротеинов разных классов зависят от их состава, т.е. от вида присутствующих белков и от соотношения триацилглицеролов, холестерола и его эфиров, фосфолипидов.

Функции липопротеинов

Функциями липопротеинов крови являются

Хиломикроны и ЛПОНП ответственны, в первую очередь, за транспорт жирных кислот в составе ТАГ. Липопротеины высокой и низкой плотности - за транспорт свободного холестерола и жирных кислот в составе его эфиров. ЛПВП способны также отдавать клеткам часть своей фосфолипидной оболочки.

Апобелки липопротеинов

Белки в липопротеинах называются апобелками. В каждом типе липопротеинов преобладают соответствующие ему апобелки, которые несут либо структурную функцию, либо являются ферментами метаболизма липопротеинов. Dыделяют несколько их типов – А, В, С, D, Е. В каждом классе липопротеинов находятся соответствующие ему апобелки, выполняющие свою собственную функцию:

  1. Структурная («стационарные» белки) - связывают липиды и формируют белок-липидные комплексы:
    • апоВ-48 присоединяют триациллицеролы;
    • апоВ-100 - связывают триацилглицеролы и эфиры холестерина;
    • апоАI акцептируют фосфолипиды;
    • апоА-IV комплексируют с холестеролом;
  2. Кофакторная («динамические» белки) - влияют на активность ферментов метаболизма липопротеинов в крови:
    • апоС-II - кофактор гепаринзависимой липопротеинлипазы;
    • апоС-III - кофактор печеночной ТАГ-липазы и ингибитор липопротеинлипазы;
    • апоАI, апоАII и апоСI - кофакторы лецитин-холестерол-ацилтрансферазы;
    • апоЕ - ингибитор липопротеинлипазы;
  3. Векторная - (белки-маркеры, стационарные - обеспечивают направленный транспорт липопротеинов:
    • апоВ-48, апоВ-100 и апоАI - связываются с рецепторами клеток-мишеней;
    • апоЕ обеспечивает взаимодействие векторных апобелков с рецепторами.

Методы определения

Разделяют липопротеины методом ультрацентрифугирования в солевых растворах, используя их различия в плавучей плотности. Меньшую плавучую плотность имеют хиломикроны, которые образуют сливкообразный слой на поверхности сыворотки при хранении ее в течение суток при температуре 0+4°С, при дальнейшем насыщении сыворотки нейтральными солями можно отделить липопротеины очень низкой (ЛПОНП), низкой (ЛПНП) и высокой (ЛПВП) плотности.

Учитывая разное содержание белка (которое отражается на суммарном заряде частиц), липопротеины разделяют методом электрофореза в различных средах (бумага, ацетатцеллюлоза, полиакриламидный, агаровый, крахмальный гели). Наибольшей подвижностью в электрическом поле обладают a‑липопротеины (ЛПВП), содержащие большее количество белка, после них следуют β‑ и преβ‑липопротеины (ЛПНП и ЛПОНП соответственно), а хиломикроны остаются около линии старта.

Критерии оценки липопротеинов Типы липопротеинов
ЛПВП ЛПНП ЛПОНП Хиломикроны
Плотность, г/л 1063‑1210 1010‑1063 1010‑930 930
Молекулярная масса, ×10 5 1,8‑3,8 22,0 30,0‑1280,0 -
Размер молекул и частиц, нм 7,0‑10,0 10,0‑30,0 200,0 >200
Всего белков, % 50‑57 21‑22 5‑12 2
Всего липидов, % 43‑50 78‑79 88‑95 98
Главные апопротеины АпоA‑I, C‑I, II, III Апо B Апо B, C‑I, II, III Апо C и B
Свободный холестерин 2‑3 8‑10 3‑5 2
Этерифицированный холестерин, % 19‑20 36‑37 10‑13 4‑5
Фосфолипиды, % 22‑24 20‑22 13‑20 4‑7
Общий холестерин / фосфолипиды 1,0 2,3 0,9 1,1
Триацилглицерины 4‑8 11‑12 50‑60 84‑87

Нормальные величины

Изменения в спектре отдельных фракций липопротеинов не всегда сопровождаются гиперлипидемией, поэтому наибольшее клинико‑диагностическое значение имеет выявление типов дислипопротеинемий, которое проводят по принципам, общим с типированием гиперлипопротеинемий по Фредриксону с соавт. (1965, 1971) с введением дополнительных типов гипер‑α‑ и гипо‑α‑липопротеинемий и гипо-β‑липопротеинемии:

Тип I: Гиперхиломикронемия

Обусловлена генетическим дефектом липопротеинлипазы или дефицитом ее кофактора - апобелка С-II. В результате, вследствии нарушения превращения хиломикронов в остаточные (ремнантные) формы, снижается их апоЕ-рецепторный эндоцитоз

Лабораторные показатели:

  • значительное увеличение количества хиломикронов;
  • нормальное или слегка повышенное содержание пре-β‑липопротеинов (ЛПОНП);
  • резкое увеличение концентрации ТАГ;
  • отношение ХС / ТАГ < 0,15.

Клинически проявляется в раннем возрасте ксантоматозом и гепатоспленомегалией в результате отложения липидов в коже, печени и селезенке. Первичная гиперлипопротеинемия I типа встречается редко и проявляется в раннем возрасте, вторичная - сопровождает диабет, красную волчанку, нефроз, гипотиреоз, проявляется ожирением.

Тип II: Гипер‑β‑липопротеинемия

1. Подтип IIa (семейная гиперхолестеринемия)

Обусловлена структурным дефектом апоВ100-рецептора и нарушением эндоцитоза ЛПНП. В результате замедляется элиминация ЛПНП из кровотока. При гомозиготной форме рецепторы отсутствуют, при гетерозиготной форме - их количество снижено вдвое.

Лабораторные показатели:

  • выcокое содержание β‑липопротеинов (ЛПНП);
  • нормальное содержание преβ‑липопротеинов (ЛПОНП);
  • высокий уровень холестерина;
  • нормальное содержание триацилглицеринов.

2. Подтип IIb

Вызвана функциональным снижением активности апоВ-100-рецептора которое развивается при нарушении формирования зрелых форм ЛПНП.

Причиной блока созревания ЛПНП являются

  • дефицит апобелка D, при этом не взаимодействуют ЛПВП и ЛПНП;
  • снижение активности фермента лецитин-холестерол-ацилтрансферазы;
  • дефект апобелка А-1, что приводит к нарушению функционирования ЛПВП.

Лабораторные показатели:

  • высокий уровень холестерина;
  • умеренное повышение триацилглицеринов.

Клинически проявляется атеросклеротическими нарушениями. Первичная гипер β‑липопротеинемия встречается более часто и наблюдается уже в раннем возрасте. В случае гомозиготной формы заканчивается летальным исходом от инфаркта миокарда в молодом возрасте, вторичная отмечается при нефрозах, заболеваниях печени, миеломной болезни, макроглобулинемии.

Тип III: Дисβ‑липопротеинемия или гиперβ‑гиперпреβ‑липопротеинемия

Обусловлена дефектом апобелка Е, ответственного за связывание остаточных хиломикронов и ЛПОНП с рецепторами на гепатоците. В результате извлечение из крови этих частиц снижается.

Лабораторные показатели:

  • возрастание концентрации β‑липопротеинов (ЛПНП) и преβ‑липопротеинов (ЛПОНП);
  • высокий уровень холестерина и триацилглицеринов;
  • отношение ХС / ТАГ = 0,3‑2,0 (чаще составляя около 1,0).

Клинически проявляется атеросклерозом с коронарными нарушениями, чаще встречается у взрослых. У части больных отмечаются плоские, бугорчатые и эруптивные ксантомы. Вторичная гиперлипопротеинемия III типа встречается у больных системной красной волчанкой и диабетическим кетоацидозом.

Тип IV. Гиперпреβ‑липопротеинемия

Обусловлена неадекватно высоким синтезом триацилглицеринов в печени при избыточном синтезе жирных кислот из глюкозы.

Лабораторные показатели:

  • повышение ЛПОНП;
  • повышение уровня триацилглицеридов;
  • нормальный или слегка повышенный уровень холестерина.

Первичная гиперлипопротеинемия IV типа приводит к развитию ожирения и атеросклероза после 20 лет, вторичная - наблюдается при переедании, гипотиреозе, сахарном диабете 2 типа, панкреатите, нефрозе, алкоголизме.

Тип V: Гиперхиломикронемия и гиперпреβ‑липопротеинемия

Обусловлена незначительным снижением активности липопротеинлипазы, что приводит к накоплению в крови хиломирконов и ЛПОНП

Лабораторные показатели:

  • повышение уровня хиломикронов;
  • повышение уровня преβ‑липопротеинов (ЛПОНП);
  • содержание триглицеринов повышенное, в ряде случаев резко;
  • содержание холестерина в норме или умеренно повышено;
  • отношение ХС / ТАГ = 0,15‑0,60.

Клинически проявляется как первый тип.

Гипер‑α‑липопротеинемия

Лабораторные показатели:

  • повышение количества ЛПВП;
  • повышение уровня α‑холестерина свыше 2 ммоль/л.

Известны случаи семейной гипер‑α‑холестеринемии и увеличение ЛПВП в крови при тренировке к длительным физическим нагрузкам.

Алипопротеинемии

Ан‑α‑липопротеинемия (танжерская болезнь)

Обусловлена врожденным нарушением синтеза апопротеинов А‑I и А‑II.

Лабораторные показатели:

  • отсутствие нормальных и появление аномальных ЛПВП;
  • снижение содержания общего холестерина до 0,26 ммоль/л и менее;
  • увеличение доли эфиров холестерина.

Клинические проявляется тонзиллитом, рано развивающимся атеросклерозом и ишемической болезнью сердца.

А‑β‑липопротеинемия

Обусловлена снижением синтеза в печени апопротеина В.

Лабораторные показатели:

  • снижение количества хиломикронов;
  • снижение уровня ЛПОНП и ЛПНП;
  • снижение холестерина до 0,5‑2,0 ммоль/л;
  • снижение содержания триглицеридов до 0‑0,2 г/л.

Клинически проявляется нарушением всасывания пищевых жиров, пигментным ретинитом, акантозом и атаксической невропатией.

Гиполипопротеинемия

1. Гипо‑α‑липопротеинемия часто сочетается с увеличением в крови ЛПОНП и ЛПНП. Клинически проявляется как II, IV и V типы гиперлипопротеинемий, что увеличивает риск возникновения атеросклероза и его осложнений.

2. Гипо‑β‑липопротеинемия выражается в снижении в крови ЛПНП. Клинически проявляется нарушением всасывания пищевых жиров в кишечнике.

ЛХАТ‑недостаточность

Обусловлена генетическим дефицитом фермента лецитин: холестерин-ацил-трансферазы.

Лабораторные показатели:

  • снижение коэффициента этерификации холестерина;
  • нарушение химического состава и структуры всех классов липопротеинов;
  • появление аномального липопротеина X во фракции ЛПНП.

Клинически проявляется гипохромной анемией, почечной недостаточностью, спленомегалией, помутнением роговицы вследствие накопления неэтерифицированного холестерина в мембранах клеток почек, селезенки, роговицы глаза, эритроцитах.

Определение β‑ и преβ‑ липопротеинов в сыворотке крови турбидиметрическим методом по Бурштейну

Принцип

В присутствии CaCl 2 и гепарина нарушается коллоидоустойчивость белков сыворотки крови и осаждается фракция преβ‑ и β‑липопротеинов.

Нормальные величины

Клинико‑диагностическое значение

Увеличение фракций β‑ и пре‑β‑липопротеинов в сыворотке крови тесно связано с гиперхолестеринемией, которая сопровождает атеросклероз, диабет, гипотиреоз, мононуклеоз, некоторые острые гепатиты, резкую гипопротеинемию, ксантоматоз, гликогеновую болезнь, также наблюдается при жировой дистрофии печени, механической желтухе. Диспротеинемическая проба Бурштейна имеет значение не только при гиперлипемических состояниях, но и как функциональная печеночная проба. При сопоставлении с тимоловой пробой этот показатель особенно ценен. Тимоловая проба более чувствительна в начальной фазе, а проба Бурштейна в конечной фазе острого гепатита и оценки постгепатитного состояния. В сочетании с тимоловой пробой она имеет большое значение для дифференциации механической желтухи от паренхиматозной. При паренхиматозной желтухе обе пробы положительны либо тимоловая положительна, а проба на β‑липопротеины отрицательна. При механической желтухе тимоловая проба отрицательна (если нет вторичного гепатита), проба Бурштейна - резко положительна.