Для каких фигур можно вычислить площадь. Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

Инструкция

Удобно действовать, если ваша фигура - многоугольник. Вы всегда сможете разбить его на конечное число , и вам достаточно помнить одну только формулу - площади треугольника. Итак, треугольника – это половина от произведения длины его стороны на длину высоты, проведенной к этой самой стороне. Суммировав площади отдельных треугольников, в которые вашей волей преобразована более сложная , вы узнаете искомый результат.

Сложнее решить задачку с определением площади произвольной фигуры. У такой фигуры могут быть не только , но и криволинейные границы. Есть способы для приблизительного вычисления. Простые.

Во-первых, вы можете использовать палетку. Это инструмент из прозрачного материала с нанесенной на его поверхность сеткой квадратов или треугольников с известной площадью. Наложив палетку поверх фигуры, для которой ищете площадь, вы пересчитываете число ваших единиц измерения, которые перекрывают изображение. Сочетайте неполностью закрытые единицы измерения друг с другом, дополняя их в уме до полных. Далее, умножив площадь одной фигуры палетки на число, которое подсчитали, вы узнаете приблизительную площадь вашей произвольной фигуры. Понятно, что чем более частая сетка нанесена на вашей палетке, тем точнее ваш результат.

Во-вторых, вы можете внутри границ произвольной фигуры, для которой определяете площадь, очертить максимальное число треугольников. Определить площадь каждого и сложить их площади. Это будет очень приблизительный результат. Если вы желаете, то можете также раздельно определить площадь сегментов, ограниченных дугами. Для этого представьте себе, что сегмент - часть от круга. Постройте этот круг, а после от его центра проведите радиусы к краям дуги. Отрезки образуют между собой угол α. Площадь всего сектора определяется по формуле π*R^2*α/360. Для каждой более мелкой части вашей фигуры вы определяете площадь и получаете общий результат, сложив полученные значения.

Третий способ сложнее, но точнее и для кого-то, проще. Площадь любой фигуры можно определить с помощью интегрального исчисления. Определенный интеграл функции показывает площадь от графика функции до абсциссы. Площадь заключенную между двумя графиками, можно определить вычитанием определенного интеграла, с меньшим значением, из интеграла в тех же границах, но с большим значением. Для использования этого метода удобно перенести вашу произвольную фигуру в систему координат и далее определить их функции и действовать методами высшей математики, в которую здесь и сейчас углубляться не станем.

Как найти площадь фигуры?


Знать и уметь рассчитывать площади различных фигур необходимо не только для решения простых геометрических задач. Не обойтись без этих знаний и при составлении или проверке смет на ремонт помещений, расчета количества необходимых расходных материалов. Поэтому давайте разберемся, как находить площади разных фигур.

Часть плоскости, заключенная внутри замкнутого контура, называется площадью этой плоскости. Выражается площадь количеством заключенных в ней квадратных единиц.

Чтобы вычислить площадь основных геометрических фигур, необходимо использовать правильную формулу.

Площадь треугольника

Обозначения:

  1. Если известны h, a, то площадь искомого треугольника определяется как произведение длин стороны и высоты треугольника, опущенной к этой стороне, разделенное пополам: S=(a·h)/2
  2. Если известны a, b, c, то искомая площадь рассчитывается по формуле Герона: корень квадратный, взятый из произведения половины периметра треугольника и трех разностей половины периметра и каждой стороны треугольника: S = √(p·(p - a)·(p - b)·(p - c)).
  3. Если известны a, b, γ, то площадь треугольника определяется как половина произведения 2-х сторон, умноженная на значение синуса угла между этими сторонами: S=(a·b·sin γ)/2
  4. Если известны a, b, c, R, то искомая площадь определяется как деление произведения длин всех сторон треугольника на четыре радиуса описанной окружности: S=(a·b·c)/4R
  5. Если известны p, r, то искомая площадь треугольника определяется умножением половины периметра на радиус вписанной в него окружности: S=p·r

Площадь квадрата

Обозначения:

  1. Если известна сторона, то площадь данной фигуры определяется как квадрат длины его стороны: S=a 2
  2. Если известна d, то площадь квадрата определяется как половина квадрата длины его диагонали: S=d 2 /2

Площадь прямоугольника

Обозначения:

  • S - определяемая площадь,
  • a, b - длины сторон прямоугольника.
  1. Если известны a, b, то площадь данного прямоугольника определяется произведением длин двух его сторон: S=a·b
  2. Если длины сторон неизвестны, то площадь прямоугольника нужно разбить на треугольники. В этом случае площадь прямоугольника определяется как сумма площадей составляющих его треугольников.

Площадь параллелограмма

Обозначения:

  • S - искомая площадь,
  • a, b - длины сторон,
  • h - длина высоты данного параллелограмма,
  • d1, d2 - длины двух диагоналей,
  • α - угол, находящийся между сторонами,
  • γ - угол, находящийся между диагоналями.
  1. Если известны a, h, то искомая площадь определяется перемножением длин стороны и высоты, опущенной на эту сторону: S=a·h
  2. Если известны a, b, α, то площадь параллелограмма определяется перемножением длин сторон параллелограмма и значения синуса угла между этими сторонами: S=a·b·sin α
  3. Если известны d 1 , d 2 , γ то площадь параллелограмма определяется как половина произведения длин диагоналей и значения синуса угла между этими диагоналями: S=(d 1 ·d 2 ·sinγ)/2

Площадь ромба

Обозначения:

  • S - искомая площадь,
  • a - длина стороны,
  • h - длина высоты,
  • α - меньший угол между двумя сторонами,
  • d1, d2 - длины двух диагоналей.
  1. Если известны a, h, то площадь ромба определяется умножением длины стороны на длину высоты, которая опущена на эту сторону: S=a·h
  2. Если известны a, α, то площадь ромба определяется перемножением квадрата длины стороны на синус угла между сторонами: S=a 2 ·sin α
  3. Если известны d 1 и d 2 , то искомая площадь определяется как половина произведения длин диагоналей ромба: S=(d 1 ·d 2)/2

Площадь трапеции

Обозначения:

  1. Если известны a, b, c, d, то искомая площадь определяется по формуле: S= (a+b) /2 *√ .
  2. При известных a, b, h, искомая площадь определяется как произведение половины суммы оснований и высоты трапеции: S=(a+b)/2·h

Площадь выпуклого четырехугольника

Обозначения:

  1. Если известны d 1 , d 2 , α, то площадь выпуклого четырехугольника определяется как половина произведения диагоналей четырехугольника, умноженная на величину синуса угла между этими диагоналями: S=(d 1 · d 2 ·sin α)/2
  2. При известных p, r площадь выпуклого четырехугольника определяется как произведение полупериметра четырехугольника на радиус окружности, вписанной в этот четырехугольник: S=p·r
  3. Если известны a, b, c, d, θ, то площадь выпуклого четырехугольника определяется как корень квадратный из произведений разницы полупериметра и длины каждой стороны за минусом произведения длин всех сторон и квадрата косинуса половины суммы двух противоположных углов: S 2 = (p - a)(p - b)(p - c)(p - d) - abcd·cos 2 ((α+β)/2)

Площадь круга

Обозначения:

Если известен r, то искомая площадь определяется как произведение числа π на радиус в квадрате: S=π r 2

Если известна d, то площадь круга определяется как произведение числа π на квадрат диаметра, поделенное на четыре: S=(π·d 2)/4

Площадь сложной фигуры

Сложную можно разбить на простые геометрические фигуры. Площадь сложной фигуры определяется как сумма или разность составляющих площадей. Рассмотрим, к примеру, кольцо.

Обозначение:

  • S - площадь кольца,
  • R, r - радиусы внешней окружности и внутренней соответственно,
  • D, d - диаметры внешней окружности и внутренней соответственно.

Для того чтобы найти площадь кольца, надо из площади большего круга отнять площадь меньшего круга. S = S1-S2 = πR 2 -πr 2 = π (R 2 -r 2).

Таким образом, если известны R и r, то площадь кольца определяется как разница квадратов радиусов внешней и внутренней окружностей, умноженная на число пи: S=π(R 2 -r 2).

Если известны D и d, то площадь кольца определяется как четверть разницы квадратов диаметров внешней и внутренней окружностей, умноженная на число пи: S= (1/4)(D 2 -d 2) π.

Площадь закрашенной фигуры

Предположим, что внутри одного квадрата (А) находится другой (Б) (меньшего размера), и нам нужно найти закрашенную полость между фигурами "А" и "Б". Скажем так, "рамку" маленького квадрата. Для этого:

  1. Находим площадь фигуры "А" (вычисляется по формуле нахождения площади квадрата).
  2. Аналогичным образом находим площадь фигуры "Б".
  3. Вычитаем из площади "А" площадь "Б". И таким образом получаем площадь закрашенной фигуры.

Теперь вы знаете, как находить площади разных фигур.

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S (G) = ∫ a b f (x) d x для непрерывной и неотрицательной функции y = f (x) на отрезке [ a ; b ] ,

S (G) = - ∫ a b f (x) d x для непрерывной и неположительной функции y = f (x) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f (x) или x = g (y) .

Теорема

Пусть функции y = f 1 (x) и y = f 2 (x) определены и непрерывны на отрезке [ a ; b ] , причем f 1 (x) ≤ f 2 (x) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 (x) и y = f 2 (x) будет иметь вид S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 (y) и x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y .

Доказательство

Разберем три случая, для которых формула будет справедлива.

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Поэтому, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графическая иллюстрация будет иметь вид:

Если обе функции неположительные, получаем: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графическая иллюстрация будет иметь вид:

Перейдем к рассмотрению общего случая, когда y = f 1 (x) и y = f 2 (x) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n - 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i - 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Следовательно,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f (x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формулу S (G) = ∫ a b f 2 (x) - f 1 (x) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f (x) и x = g (y) .

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y = - x 2 + 6 x - 5 и прямыми линиями y = - 1 3 x - 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

На отрезке [ 1 ; 4 ] график параболы y = - x 2 + 6 x - 5 расположен выше прямой y = - 1 3 x - 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Ответ: S (G) = 13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке (2 ; 2) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Ответ: S (G) = 59 6

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = - x 2 + 4 x - 2 .

Решение

Нанесем линии на график.

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и - x 2 + 4 x - 2 . При условии, что x не равно нулю, равенство 1 x = - x 2 + 4 x - 2 становится эквивалентным уравнению третьей степени - x 3 + 4 x 2 - 2 x - 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Разделив выражение - x 3 + 4 x 2 - 2 x - 1 на двучлен x - 1 , получаем: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Оставшиеся корни мы можем найти из уравнения x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 - 13 2 ≈ - 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Ответ: S (G) = 7 + 13 3 - ln 3 + 13 2

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = - log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = - log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке (0 ; 0) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения - log 2 x + 1 = 0 , поэтому графики функций y = - log 2 x + 1 и y = 0 пересекаются в точке (2 ; 0) .

x = 1 является единственным корнем уравнения x 3 = - log 2 x + 1 . В связи с этим графики функций y = x 3 и y = - log 2 x + 1 пересекаются в точке (1 ; 1) . Последнее утверждение может быть неочевидным, но уравнение x 3 = - log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = - log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В этом случае для нахождения площади придется использовать формулу вида S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и - log 2 x + 1 относительно x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Получим искомую площадь:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Ответ: S (G) = 1 ln 2 - 1 4

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = - 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x - 3 .

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 П р о в е р к а: x 1 = 16 = 4 , - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ (4 ; 2) т о ч к а п е р е с е ч е н и я y = x и y = - 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 П р о в е р к а: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ (9 ; 3) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = - 1 2 x + 4 и y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) т о ч к а п е р е с е ч е н и я y = - 1 2 x + 4 и y = 2 3 x - 3

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Тогда площадь фигуры равна:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = - 1 2 x + 4 ⇒ x = - 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S (G) = 11 3

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Площадь: Площадь величина, измеряющая размер поверхности. В математике Площадь фигуры геометрическое понятие, размер плоской фигуры. Площадь поверхности числовая характеристика поверхности. Площадь в архитектуре, открытое… … Википедия

Площадь - У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Площадь треугольника - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

Площадь Ленина (Петрозаводск) - Площадь Ленина Петрозаводск … Википедия

Площадь (в геометрии) - Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

ПЛОЩАДЬ - одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких примыкающих друг к… … Большой Энциклопедический словарь

ПЛОЩАДЬ (в геометрии) - ПЛОЩАДЬ, одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких… … Энциклопедический словарь

ПЛОЩАДЬ - ПЛОЩАДЬ, площади, пред. о площади и (устар.) на площади, мн. и площадей, жен. (книжн.). 1. Часть плоскости, ограниченная ломаной или кривой линией (геом.). Площадь прямоугольника. Площадь криволинейной фигуры. 2. только ед. Пространство,… … Толковый словарь Ушакова

Площадь (архитект.) - Площадь, открытое, архитектурно организованное, обрамленное какими либо зданиями, сооружениями или зелёными насаждениями пространство, входящее в систему других городских пространств. Предшественниками городских П. были парадные дворы дворцовых и … Большая советская энциклопедия

Площадь Памяти (Тюмень) - Площадь Памяти Тюмень Общая информация … Википедия

Книги

  • Фигуры в математике, физике и природе. Квадраты, треугольники и круги , Шелдрик-Росс Кэтрин. О книге Фишки книги Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру В книге максимально подробно описаны главные фигуры: квадраты, круги и… Купить за 1206 руб
  • Фигуры в математике физике и природе Квадраты треугольники и круги , Шелдрик-Росс К.. Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру. В книге максимально подробно описаны главные фигуры: квадраты, кругии треугольники. Книга научит…

Существует бесконечное количество плоских фигур самой разной формы, как правильных, так и неправильных. Общее свойство всех фигур - любая из них обладает площадью. Площади фигур - это размеры части плоскости, занимаемой этими фигурами, выраженные в определенных единицах. Величина эта всегда бывает выражена положительным числом. Единицей измерения служит площадь квадрата, чья сторона равняется единице длины (например, одному метру или одному сантиметру). Приблизительное значение площади любой фигуры можно вычислить, умножив количество единичных квадратов, на которые она разбита, на площадь одного квадрата.

Другие определения данного понятия выглядят следующим образом:

1. Площади простых фигур - скалярные положительные величины, удовлетворяющие условиям:

У равных фигур - равные величины площадей;

Если фигура делится на части (простые фигуры), то ее площадь - сумма площадей данных фигур;

Квадрат, имеющий стороной единицу измерения, служит единицей площади.

2. Площади фигур сложной формы (многоугольников) - положительные величины, имеющие свойства:

У равных многоугольников - одинаковые величины площадей;

В случае, если многоугольник составляют несколько других многоугольников, его площадь равняется сумме площадей последних. Это правило справедливо для неперекрывающихся многоугольников.

В качестве аксиомы принято утверждение, что площади фигур (многоугольников) - положительные величины.

Определение площади круга дается отдельно как величины, к которой стремится площадь вписанного в окружность данного круга - при том, что число его сторон стремится к бесконечности.

Площади фигур неправильной формы (произвольных фигур) не имеют определения, определяются лишь способы их вычисления.

Вычисление площадей уже в древности было важной практической задачей при определении размеров земельных участков. Правила вычисления площадей за несколько сотен лет были сформулированы греческими учеными и изложены в «Началах» Евклида как теоремы. Интересно, что правила определения площадей простых фигур в них - те же, что и в настоящее время. Площади имеющих криволинейный контур, рассчитывались с применением предельного перехода.

Вычисление площадей простых прямоугольника, квадрата), знакомых всем со школьной скамьи, достаточно просто. Необязательно даже запоминать содержащие буквенные обозначения формулы площадей фигур. Достаточно помнить несколько простых правил:

2. Площадь прямоугольника вычисляется умножением его длины на ширину. При этом необходимо, чтобы длина и ширина были выражены в одних и тех же единицах измерения.

3. Площадь сложной фигуры вычисляем, разделив ее на несколько простых и сложив полученные площади.

4. Диагональ прямоугольника делит его на два треугольника, чьи площади равны и равняются половине его площади.

5. Площадь треугольника вычисляется как половина произведения его высоты и основания.

6. Площадь круга равняется произведению квадрата радиуса на всем известное число «π».

7. Площадь параллелограмма вычисляем как произведение смежных сторон и синуса лежащего между ними угла.

8. Площадь ромба - ½ результата умножения диагоналей на синус внутреннего угла.

9. Площадь трапеции находим умножением ее высоты на длину средней линии, которая равняется среднему арифметическому оснований. Другой вариант определения площади трапеции - перемножить ее диагонали и синус лежащего между ними угла.

Детям в начальной школе для наглядности часто даются задания: найти площадь нарисованной на бумаге фигуры с помощью палетки или листа прозрачной бумаги, разграфленной на клеточки. Такой лист бумаги накладывается на измеряемую фигуру, считается число полных клеточек (единиц площади), поместившихся в ее контуре, затем число неполных, которое делится пополам.