Для пространственной произвольной системы сил можно составить. Пространственная сходящаяся система сил

Выше (6.5, случай 6) было установлено, что

Учитывая, что , , спроектируем формулы (6.18) на Декартовы оси координат. Имеем аналитическую форму уравнений равновесия произвольной пространственной системы сил :

(6.19)

Последние три уравнения имеют место из-за того, что проекция момента силы относительно точки на ось, которая проходит через эту точку, равна моменту силы относительно оси (формула (6.9)).

Вывод произвольной пространственной системы сил , которая приложена к твердому телу, мы должны составить шесть уравнений равновесия (6.19), потому имеем возможность с помощью этих уравнений определить шесть неизвестных величин .

Рассмотрим случай пространственной системы параллельных сил. Систему координат выберем так, чтобы ось Оz была параллельна линиям действия сил (рис. 6.11).

Таким образом, остались три уравнения:

Вывод . При решении задач на равновесие параллельной пространственной системы сил, которая приложена к твердому телу, мы должны составить три уравнения равновесия и имеем возможность с помощью этих уравнений определить три неизвестных величины .

На первой лекции по разделу «Статика» мы выяснили, что имеют место шесть разновидностей систем сил , которые могут встретиться в Вашей практике инженерных расчетов. Кроме того есть две возможности расположения пар сил: в пространстве и в плоскости. Сведем все уравнения равновесия для сил и для пар сил в одну таблицу (табл. 6.2), в которой в последней колонке отметим количество неизвестных величин, которые позволит определить система уравнений равновесия.

Таблица 6.2 – Уравнения равновесия разных систем сил

Вид системы сил Уравнения равновесия Количество определяемых неизвестных
Сходящаяся плоская
Параллельная плоская ( оси 0у ) т. А 0ху
Произвольная плоская (в плоскости 0ху) т. А – произвольная, принадлежащая плоскости 0ху

Продолжение таблицы 6.2

Продолжение таблицы 6.2

Вопросы для самоконтроля по теме 6

1. Как найти момент силы относительно оси?

2. Какая зависимость существует между моментом силы относительно точки и моментом этой же силы относительно оси, которая проходит через эту точку?

3. В каких случаях момент силы относительно оси равен нулю? А когда он наибольший?

4. В каких случаях система сил приводится к равнодействующей?

5. В каком случае пространственная система сил приводится:

– к паре сил;

– к динамическому винту?

6. Что называется инвариантом статики? Какие Вы знаете инварианты статики?

7. Запишите уравнения равновесия произвольной пространственной системы сил.

8. Сформулируйте необходимое и достаточное условие равновесия параллельной пространственной системы сил.

9. Изменится ли главный вектор системы сил при изменении центра приведения? А главный момент?


Тема 7. ФЕРМЫ. ОПРЕДЕЛЕНИЕ УСИЛИЙ

Произвольной пространственной системой сил называется система сил, линии действия которых не лежат в одной плоскости.

Отсюда вытекает условие равновесия произвольной пространственной системы сил .

В геометрической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы главный вектор и главный момент системы равнялись нулю

R = 0, M o = 0 .

В аналитической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на три координатные оси и суммы моментов всех сил относительно этих осей были равны нулю

ΣF kx = 0 , ΣF ky = 0 , ΣF kz = 0 ,

M x (F k) = 0 , M y (F k) = 0 , M z (F k) = 0 .

Центр тяжести. Способы определение центра тяжести. Координаты центра тяжести плоского тела и составленных сечений.

Центр тяжести

Центр тяжести тела - точка приложения силы тяжести (равнодействующей гравитационных сил).

Центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс.

Определение центра тяжести

Определение центра тяжести произвольного тела путем последовательного сложения сил, действующих на отдельные его части,- трудная задача; она облегчается только для тел сравнительно простой формы.

Пусть тело состоит только из двух грузов с массами m 1 и m 2 , соединенных стержнем (рис. 126). Если масса стержня мала по сравнению с массами m 1 и m 2 , то ею можно пренебречь. На каждую из масс действует сила тяжести:

P 1 =m 1 g, Р 2 =m 2 g;

обе они направлены вертикально вниз, т. е. параллельно друг другу. Как мы уже знаем, равнодействующая двух параллельных сил приложена в точке О, которая определяется из условия

Следовательно, центр тяжести делит расстояние между двумя массами в отношении обратном отношению масс. Если это тело подвесить в точке О, оно останется в равновесии.

Определение координат центра тяжести

Способы определения координат центра тяжести Исходя из полученных ранее общих формул, можно указать способы определения координат центров тяжести твердых тел: 1 Аналитический (путем интегрирования). 2 Метод симметрии. Если тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии. 3 Экспериментальный (метод подвешивания тела). 4 Разбиение. Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.8) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны Рисунок 1.8 5Дополнение (метод отрицательных площадей или объемов). Частный случай способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Например, необходимо найти координаты центра тяжести плоской фигуры (рисунок 1.9): Рисунок 1.9

Центр тяжести однородных плоских тел

(плоских фигур)

Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V = Ah, где А - площадь фигуры, h - ее высота.

Тогда после подстановки в записанные выше формулы получим:

; ; ,

где Ак - площадь части сечения; хк, ук - координаты ЦТ частей сечения.

Выражение называют статическим моментом площади (Sy.).

Координаты центра тяжести сечения можно выразить через статический момент:

Оси, проходящие через центр тяжести, называются центральными осями. Статический момент относительно центральной оси равен нулю.

Определение координат центра тяжести плоских фигур

Примечание. Центр тяжести симметричной фигуры находится на оси симметрии.

Центр тяжести стержня находится на середине высоты. Положения центров тяжести простых геометрических фигур могут быть рассчитаны по известным формулам (рис. 8.3: а) - круг; б) - квадрат, прямоугольник; в) - треугольник; г) - полукруг).

Рассмотрим произвольную пространственную систему сил, дей­ствующих на твердое тело. Приведем эту систему сил к заданному цен­тру и остановимся на том случае, когда главный вектор и главный мо­мент данной системы сил равны нулю, т.е.

(1) Такая система сил эквивалентна нулю, т.е. уравновешена. Сле­довательно, равенства (1) являются достаточными условиями равнове­сия. Но эти условия также и необходимы, т.е. если система сил нахо­дится в равновесии, то равенства (1) также выполняются.В самом деле, если бы система находилась в равновесии, но, например то данная система привилась бы к равнодействующей в центре приведения и равновесия не было бы. Если бы но Мо =**О, данная система привилась бы к паре и равновесия также не было пара не могут уравновесить друг друга. Таким образом, мы доказали, что для равновесия произвольной пространственной системы сил необ­ходимо и достаточно, чтобы главный вектор и главный момент этой системы относительно произвольно выбранного центра приведенияравнялись нулю. Условия (1) называются условиями равновесия в векторной форме. Для получения более удобной для практических целей аналити­ческой формы условий равновесия спроецируем равенства (1) на оси декартовой системы координат. В результате получим:

(2)условия равновесия системы параллельных сил в пространстве Для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси ко­ординат х, у и z, а также сумма моментов всех сил относительно этих же осей равнялись нулю.Пусть на твердое тело действует пространственная система па­раллельных сил. Так как выбор осей произволен, можно выбрать систе­му координат так, чтобы одна из осей была параллельна силам, а две

другие им перпендикулярны (рис. 1.38). При таком выборе координатных осей проекции каждой из сил на оси х и у и их моменты относительно оси z всегда будут равны ну­лю. Это означает,что

Эти равенства тождественно выполняются, независимо от того, находится ли данная система сил в равновесии или нет, т.е. перестают быть условиями рав­новесия. Поэтому в качестве условий равновесия останутся следующие:

Таким образом, для равновесия системы параллельных сил в пространстве необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную этим силам, равнялась нулю и чтобы сулима их моментов относительно каждой из двух координатных осей, перпен­дикулярных силам, также равнялись нулю.

17,Теорема об эквивалентности 2ух пар сил а пространстве.

Приведение силы к заданному центру (метод Пуансо) – силу можно перенести параллельно самой себе в любую точку плоскости, если добавить соответствующую пару сил, момент которой равен моменту этой силы относительно рассматриваемой точки. Добавим к системе в точке A две силы, равные по величине между собой и величине заданной силы, направленные по одной прямой в противоположные стороны и параллельные заданной силе: Кинематическое состояние не изменилось (аксиома о присоединении). Исходная сила и одна из добавленных сил противоположно направленная образуют пару сил. Момент этой пары численно равен моменту исходной силы относительно центра приведения. Во многих случаях пару сил удобно изображать дуговой стрелкой. Приведение плоской произвольной системы сил к заданному центру – выбираем произвольную точку на плоскости и каждую из сил переносим по методу Пуансо в эту точку. Вместо исходной произвольной системы получим сходящуюся систему сил и систему пар. Сходящаяся система сил приводится к одной силе, приложенной в центре приведения, которая ранее называлась равнодействующей, но теперь эта сила не заменяет исходную систему сил, поскольку после приведения возникла система пар. Система пар приводится к одной паре (теорема о сложении пар), момент которой равен алгебраической сумме моментов исходных сил относительно центра приведения. В общем случае плоская произвольная система сил приводится к одной силе, называемой главным вектором и к паре с моментом, равным главному моменту всех сил системы относительно центра приведения: - главный вектор, - главный момент. A. A. Условием равновесия плоской произвольной системы сил является одновременное обращение главного вектора и главного момента системы в ноль: Уравнения равновесия (I форма) получаются в виде системы трех уравнений из условий равновесия с использованием выражений для проекций главного вектора: Существуют еще две формы уравнений Равновесия (II и III формы)

17.

27-28.зависимость между главными моментами сил относительно двух произвольно выбранных центров приведения. Инварианты системы сил

Пусть пространственная система сия приведена к центру О, т.е.

где Главный момент образует с направлением главного вектора не­который Угол а (рис 1.32)

Возьмем теперь новый центр приведения О1 и приведем все си­лы к этому центру. В результате снова получим главный вектор, равный главному вектору R, и новый главный момент, определяемый формулой где pк - радиус-вектор точки приложения силы Fk, проведенный из но­вого центра приведения О1 (см. рис. 1.32).Главный момент Мо1 относительно нового центра приведенияизменился и теперь образует с направлением главного вектора R неко­торый угол а1. Установим связь между моментами Мо и Мо1 .Из рисунка 1.32 видно, что (3) Подставляя (3) в равенство (2), получим (4)Далее, раскрывая скобки в правой части равенства (4) и вынося общий множитель О1О за знак суммы, имеем

( - проекции главного момента относительно точки О на координатные оси).

Приведение силы к заданному центру.

Чтобы привести силу, приложенную в какой-либо точке твердого тела к заданному центру необходимо:

1)Перенести силу параллельно самой себе в заданный центр не изменяя модуля силы.

2)В заданном центре приложить пару сил, векторный момент которой равен векторному моменту переносимой силы относительно нового центра. Эту пару сил называют присоединенной парой.

Действие силы на твердое тело не изменяется при переносе ее параллельно самой себе в другую точку твердого тела, если добавить пару сил.

33 32


34.Для плоской системы параллельных сил можно составить два уравнения равновесия.если силы параллельны оси У,то уравнения равновесия имеют вид.

Второе уравнение можно составить относительно любой точки.

35 для равновесия совершенно свободного тела, на которое действует пространственная произвольная система сил, необходимо и достаточно, чтобы выполнялись шесть уравнений равновесия. Если тело закреплено в одной точке, то оно имеет три степени свободы. Двигаться поступательно такое тело не может, а может только вращаться вокруг любой оси, т. е. вокруг осей координат. Для того чтобы такое тело находилось в равновесии, нужно, чтобы оно не вращалось, а для этого достаточно потребовать равенства нулю трех уравнений моментов

Итак, для того чтобы абсолютно твердое тело с одной закрепленной точкой, на которое действует произвольная пространственная система сил, находилось в равновесии, необходимо и достаточно, чтобы суммы моментов всех сил относительно трех взаимно перпендикулярных осей равнялись нулю.

Три других уравнения служат для ля определения составляющих реакции шарнира в точке крепления Nx, Ny, Nz

37. Тело, имеющее две закрепленные точки, имеет одну степень свободы. Оно может вращаться только вокруг оси, проходящей через эти две закрепленные точки.Равновесие будет в том случае, если тело не будет вращаться вокруг этой оси. Поэтому для равновесия достаточно потребовать, чтобы сумма моментов всех сил, действующих на тело, относительно оси, проходящей через две закрепленные точки, равнялась нулю: ∑Mxx(Fi)=0

38/Система тел представляет собой несколько тел, соединенных между собой каким-то образом. Силы, действующие на тела сис­темы, делят на внешние и внутренние. Внутренними называют силы взаимодействия между телами одной и той же системы, а внешними называют силы, с которыми на тела данной систе­мы действуют тела, не входящие в нее.

Если система тел находится в равновесии, то рассматриваем равновесие каждого тела в отдельности, учитывая внутренние силы взаимодействия между телами. Если задана плоская произвольная система N тел, то для этой системы можно составить 3N уравне­ний равновесия. При решении задач на равновесие системы тел можно также рассмат­ривать равновесие как системы тел в целом, так и для любых со­четаний тел. В случае рассмотрения равновесия системы в целом внутренние силы взаимодействия между телами не учитываются на основании аксиомы о равенстве сил действия и противодействия. Таким образом существует 2 типа нахождения равновесия систем тел…1сп В первую очередь рассматриваем всю конструкцию.а затем отсоединяем от этой системы какое-либо тело и рассм. Равновесие в нем. 2сп.Расчленяем сис-му на отдельные тела и сост.уравнение равновесия для каждого тела.

Статически определимые системы-это системы,в которых число неизвестных величин не превышает числанезависимых уравнений равновесия для данной системы сил.

Статически неопр. Системы-это системы в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил Kcт=R-Y где R-число реакций. Y-число независимых уравнений

41.После выхода тела из положения равновесия сила трения по­коя уменьшается и при движении ее называют силой трения скольжения, т. е. коэффициент трения скольжения несколько меньше коэффициента трения покоя. В технических расчетах принимают, что эти коэффициенты равны.С увеличением ско­рости движения для большинства материалов коэффициент тре­ния скольжения уменьшается. Коэффициент трения скольжения определяют экспериментально.

Сила трения скольжения направлена противоположно воз­можному движению тела.

Сила трения не зависит от площади соприкасающихся по­верхностей.

Максимальная сила трения пропорциональна нормальному давлению. Под нормальным давлением понимают полное давле­ние на всю площадь соприкосновения трущихся поверхностей: Fmax=fN

43.При наличии трения полная реакция шероховатой поверхно­сти отклонена от нормали к поверхности на некоторый угол <р, который в случае выхода тела из равновесия достигает максимума и называется углом трения tgφ=Fmax/N Fmax=fN тогда tgφ=f

Тангенс угла трения равен коэффициенту трения.

Конусом трения называют конус, описанный полной реакци­ей R вокруг направления нормальной реакции. Если коэффи­циент трения f во всех направлениях одинаков, то конус тре­ния будет круговым

Для равновесия тела на шероховатой поверхности необходимо и достаточно, чтобы равнодействующая активных сил находилась внутри конуса трения или проходила по образующей конуса

30.Модуль главного вектора Ro=√Rx^2+Ry^2 где Rx= ƩFkx Ry= ƩFky (Rx,Ry проекции главного вектора на соответствующие оси координат)

Углы образованные главным вектором с соответствующей осью координат Сos(x^Ro)=Rx/Ro Сos(y^Ro)=Ry/Ro

Модуль главного момента относительно выбранного центра приведения О Mo√Mox^2+Moy^2 где Mox=∑Mx(Fk) Moy=∑My(Fk) Mox Moy-проекции главного момента относительно точки О на координатные оси)

Углы образованные главным моментом с соотв.осями координат Сos(x^Mo)=Mox/Mo Сos(y^Mo)=Moy/Mo

Если Ro не=0 Mo=0 система сил может быть заменена одной силой

Ro=0 Mo не=0 система сил заменяется парой сил

Roне=0 Mo не=0 но Ro перпендикулярноMo заменяется одной силой не проходящей через центр приведения

31.Плоская система сил. Все силы этой системы лежат в одной плоскости. Пусть, например, это будет плоскость XAY, где A произвольный центр приведения. Силы этой системы на ось AZ не проектируются и моментов относительно осей AX и AY не создают, так как лежат в плоскости XAY (п. 13). При этом выполняется равенство


Учитывая это, получим условия равновесия для плоской системы сил:

Таким образом, для равновесия твердого тела под действием плоской системы сил необходимо и достаточно, чтобы равнялись нулю две суммы проекций сил на оси координат и сумма алгебраических моментов всех сил относительно любой точки плоскости.

39.распределенными называют силы, действующие на все точки данного объема или данной части поверхности, или линии. Рас­пределенные силы характеризуются интенсивностьюq , т. е. силой, приходящейся на единицу объема, поверхности или длины ли­нии. Распределенные силы обычно заменяют сосредоточенными.

Если распределенные силы действуют в плоскости на прямую линию, то их заменяют сосредоточенной силой следующим об­разом.

Равномерно распределенную нагрузку интенсивностью q за­меняют сосредоточенной силой Q =qL которая приложена в середине участка. Равномерно распределенной нагрузкой назы­вают силы, имеющие одинаковые величины и направления на заданном участке тела.

Если распределенные силы изменяются по линейному закону

(по треугольнику), то сосредоточенная сила Q = qmaxL/2- прило­жена в центре тяжести треугольника, расположенного на рас­стоянии - от его основания……………….

44.Трение качения - сопротивление движению, возникающее при перекатывании тел друг по другу. Проявляется, например, между элементами подшипников качения, между шиной колеса автомобиля и дорожным полотном. Как правило, величина трения качения гораздо меньше величины трения скольжения, и потому качение является распространенным видом движения в технике.

Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

45.трение верчения. Предположим, что на горизонтальной плоскости лежит тяжелый шар, обозначим центр шара через О, а точку касания шара с плоскостью через С. Вращение шара вокруг прямой СО и называется верчением. Опыт показывает, что если момент пары, которая должна привести шар в верчение, очень мал, то шар в верчение не придет. Отсюда следует, что действие движущей пары парализуется какойто другой парой, от наличия которой и зависит трение верчения.

Один из методов расчета момента трения подшипника качения заключается в том, что момент трения делится на, так называемый, независимый от нагрузки момент M0 и зависимый от нагрузки момент M1, которые затем складываются и дают суммарный момент:

46две параллельные и направленные в одну сторону силы приводятся к одной силе – равнодействующей, приложенной в точке, делящей прямую на расстояния, обратно пропорциональные величинам сил. Последовательно складывая попарно параллельные силы приходим также к одной силе – равнодействующей R: Поскольку силу можно переносить по линии ее действия, то точка приложения силы (равнодействующей) по существу не определена. Если все силы повернуть на один и тот же угол и вновь провести сложение сил, то получаем другое направление линии действия равнодействующей. Точка пересечения этих двух линий действия равнодействующих может рассматриваться, как точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол. Такая точка называется центром параллельных сил. Центр параллельных сил –точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол

47Радиус-вектором точки называется вектор, начало которого совпадает с началом системы координат, а конец - с данной точкой.

Таким образом, особенностью радиус-вектора, отличающего его от всех других векторов, является то, что его начало всегда находится в точке начала координат (рис. 17).

Центр параллельных сил, точка, через которую проходит линия действия равнодействующей системы параллельных сил Fk при любом повороте всех этих сил около их точек приложения в одну и ту же сторону и на один и тот же угол. Координаты Центр параллельных сил определяются формулами:

где xk, yk, zk - координаты точек приложения сил.

48 Центр тяжести твердого тела – точка, неизменно связанная с этим телом, через которую проходит линия действия равнодействующей сил тяжести частиц тела при любом положении тела в пространстве. При этом поле тяжести считается однородным, т.е. силы тяжести частиц тела параллельны друг другу и сохраняют постоянную величину при любых поворотах тела. Координаты центра тяжести:

; ; , где Р=åр k , x k ,y k ,z k – координаты точек приложения сил тяжести р k . Центр тяжести – геометрическая точка и может лежать и вне пределов тела (например, кольцо). Центр тяжести плоской фигуры:

DF k – элементарная площадка, F – площадь фигуры. Если площадь нельзя разбить на несколько конечных частей, то . Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

49 Решение задач на определение положения (координат) центра тяжести однородной пластинки, системы тел находящихся на плоскости или пространстве сводится к составлению уравнений и дальнейшей подставки в него известных численных данных и вычисление результата:

Т.е. необходимо разбить систему на составляющие, найти положения центра тяжести этих составных элементов. Вычислить массу составных частей, выразив ее через удельную плотность – линейную, объемную или поверхностную, в зависимости от типа представленной системы. В конце решения удельная плотность сократиться, так что не стоит ее смущаться вводить (как правило она не дана, но в тексте задачи указывается, что пластина, стержни, плита однородны). Из особенностей этой задачи следует отметить две вещи: 1) определение центра тяжести у составляющей прямоугольной, квадратной формы или стержня, окружности не составляет труда – центр тяжести таких фигур находится по центру.

50. кругового сектора: ; Треугольник. Разбиением треугольника на тонкие линии,

параллельные каждой из его сторон, определяют, что поскольку центр

тяжести каждой линии лежит на ее геометрическом центре (в центре

симметрии), то центр тяжести треугольника лежит на пересечении его

медиан. Точка пересечения медиан делит их в соотношении (2:1).

Круговой сектор (рисунок 54). Центр тяжести лежит на оси

симметрии. Разбиением кругового сектора на элементарные треугольники

определяют дугу, образованную центрами тяжести треугольников. Радиус

дуги равен 2/3 радиуса сектора. Таким образом, координата центра

тяжести кругового сектора определяется

выражением xC = sin α .

51Полушар. Центр тяжести лежит на оси симметрии на расстоянии

3/8 от основания.

Пирамида (конус) (рисунок 55).

Центр тяжести лежит на линии,

соединяющей вершину с центром

тяжести основания на расстоянии ¾ от

Дуга окружности Центр тяжести лежит на оси симметрии и имеет

координаты xC = sin α ; уС = 0 .

Кинематика

1Кинематика , раздел теоретической механики, изучает движение материальных тел не интересуясь причинами, вызывающих или изменяющих это движение. Для нее важны лишь физическая обоснованность и математическая строгость в рамках принятых моделей Задачи кинематики Задать движение материальной точки (системы)- это значит дать способ определения положения точки (всех точек, образующих систему) в любой момент времени.
Задачи кинематики состоят в разработке способов задания движения точки (системы) и методов определения скорости, ускорения точки и других кинематических величин точек, составляющих механическую систему. траектория точки

Задать движение точки означает задать ее положение в каждый момент времени. Положение это должно определяться, как уже отмечалось, в какой-либо системе координат. Однако для этого не обязательно всегда задавать сами координаты; можно использовать величины, так или иначе с ними связанные. Ниже описаны три основных способа задания движения точки.

1. Естественный способ. Этим способом пользуются, если известна траектория движения точки. Траекторией называется совокупность точек пространства, через которые проходит движущаяся материальная частица. Это линия, которую она вычерчивает в пространстве. При естественном способе необходимо задать (рис. 1):

а) траекторию движения (относительно какой-либо системы координат);

б) произвольную точку на ней нуль, от которого отсчитывают расстояние S до движущейся частицы вдоль траектории;

в) положительное направление отсчета S (при смещении точки М в противоположном направлении S отрицательно);

г) начало отсчета времени t;

д) функцию S(t), которая называется законом движения**) точки.

2. Координатный способ. Это наиболее универсальный и исчерпывающий способ описания движения. Он предполагает задание:

а) системы координат (не обязательно декартовой) q1, q2, q3;

б) начало отсчета времени t;

в) закона движения точки, т.е. функций q1(t), q2(t), q3(t).

Говоря о координатах точки, мы всегда будем иметь в виду (если не оговорено противное) ее декартовы координаты.

3. Векторный способ. Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторого начала в данную точку (рис. 2). В этом случае для описания движения необходимо задать:

а) начало отсчета радиус-вектора r;

б) начало отсчета времени t;

в) закон движения точки r(t).

Поскольку задание одной векторной величины r эквивалентно заданию трех ее проекций x, y, z на оси координат, от векторного способа легко перейти к координатному. Если ввести единичные векторы i, j, k (i = j = k = 1), направленные соответственно вдоль осей x, y и z (рис. 2), то, очевидно, закон движения может быть представлен в виде*)

r(t) = x(t)i +y(t)j+z(t)k. (1)

Преимущество векторной формы записи перед координатной в компактности (вместо трех величин оперируют с одной) и часто в большей наглядности.

Пример. На неподвижную проволочную полуокружность надето маленькое колечко М, через которое проходит еще прямолинейный прут АВ (рис. 3), равномерно вращающийся вокруг точки А (= t, где =const). Найти законы движения колечка М вдоль стержня АВ и относительно полуокружности.

Для решения первой части задачи воспользуемся координатным способом, направив ось х декартовой системы вдоль стержня и выбрав ее начало в точке А. Поскольку вписанный АМС прямой (как опирающийся на диаметр),

x(t) = AM = 2Rcos = 2Rcoswt,

где R радиус полуокружности. Полученный закон движения называется гармоническим колебанием (колебание это будет продолжаться, очевидно, лишь до того момента, пока колечко не дойдет до точки А).

Вторую часть задачи будем решать, используя естественный способ. Выберем положительное направление отсчета расстояния вдоль траектории (полуокружности АС) против часовой стрелки (рис. 3), а нуль совпадающим с точкой С. Тогда длина дуги СМ как функция времени даст закон движения точки М

S(t) = R2 = 2R t,

т.е. колечко будет равномерно двигаться по окружности радиусом R с угловой скоростью 2 . Как явствует из проведенного рассмотрения,

нуль отсчета времени в обоих случаях соответствовал моменту, когда колечко находилось в точке С.

2.Векторный способ задания движения точки

Скорость точки направлена по касательной к траектории (рис. 2.1) и вычисляется, согласно (1.2), по формуле

Существуют три вида уравнений равновесия плоской системы сил. Первый, основной вид вытекает непосредственно из условий равновесия:

;

и записывается так:

;
;
.

Два других вида уравнений равновесия также могут быть получены из условий равновесия:

;
;
,

где прямая AB не перпендикулярна осиx ;

;
;
.

Точки A , B и C не лежат на одной прямой.

В отличие от плоской системы сил условиями равновесия произвольной пространственной системы сил являются два векторных равенства:


.

Если эти соотношения спроецировать на прямоугольную систему координат, то получим уравнения равновесия пространственной системы сил:

Задание 1. Определение реакций опор составной конструкции (Система двух тел)

Конструкция состоит из двух ломаных стержней ABC иCDE , соединенных в точкеC неподвижным цилиндрическим шарниром и прикрепленных к неподвижной плоскостиxOy либо с помощью неподвижных цилиндрических шарниров (НШ), либо подвижным цилиндрическим шарниром (ПШ) и жесткой заделкой (ЖЗ). Плоскость качения подвижного цилиндрического шарнира составляет уголс осьюOx. Координаты точкиA , B , C ,D иE , а также способ крепления конструкции приведены в табл. 1. Конструкция загружена равномерно распределенной нагрузкой интенсивностиq , перпендикулярной участку ее приложения, парой сил с моментомM и двумя сосредоточенными силами и . Равномерно распределенная нагрузка приложена таким образом, что ее равнодействующая стремится повернуть конструкцию вокруг точкиO против хода часовой стрелки. Участки приложенияq иM , а также точки приложения и , их модули и направления указаны в табл. 2. Единицы задаваемых величин: q – килоньютон на метр (кН/м);M – килоньютон-метр (кНм); и – килоньютон (кН);ипредставлены в градусах, а координаты точек – в метрах. Углы,иследует откладывать от положительного направления осиOx против хода часовой стрелки, если они положительны, и по ходу часовой стрелки – если отрицательны.

Определите реакции внешних и внутренней связей конструкции.

Указания к выполнению задания

На координатной плоскости xOy в соответствии с условием варианта задания (табл. 1) необходимо построить точкиA ,B, C ,D ,E ; изобразить ломаные стержниABC ,CDE ; указать способы крепления этих тел между собой и с неподвижной плоскостьюxOy . Затем, взяв данные из табл. 2, загрузить конструкцию двумя сосредоточенными силами и , равномерно распределенной нагрузкой интенсивностиq и парой сил с алгебраическим моментом M . Так как в задании исследуется равновесие составного тела, далее нужно построить еще один рисунок, изобразив на нем отдельно телаABC и CDE . Внешние (точкиA ,E ) и внутреннюю (точкаС ) связи на обоих рисунках следует заменить на соответствующие реакции, а равномерно распределенную нагрузку – на равнодействующую
(l – длина участка приложения нагрузки), направленную в сторону нагрузки и приложенную к середине участка. Поскольку рассматриваемая конструкция состоит из двух тел, то для нахождения реакций связей нужно составить шесть уравнений равновесия. Существуют три варианта решения этой задачи:

а) составить три уравнения равновесия для составного тела и три – для тела ABC ;

б) составить три уравнения равновесия для составного тела и три – для тела CDE ;

в) составить по три уравнения равновесия для тел АВС иCDE .

Пример

Дано: A (0;0,2);В (0,3:0,2);С (0,3:0,3);D (0,7:0,4);E (0,7:0);
кН/м,
кН, β = - 45˚, и
кН, γ = - 60˚,
кНм.

Определить реакции внешних и внутренней связей конструкции.

Решение. Разобьем конструкцию (рис. 7,а ) в точкеС на составные частиABC иCDE (рис. 7,б ,в ). Заменим шарнирыA иB соответствующими реакциями, составляющие которых укажем на рис. 7. В точкеC изобразим составляющие
- сил взаимодействия между частями конструкции, причем.

Таблица 1

Варианты задания 1

A

Способ крепления

конструкции

x A

y A

x B

y B

x C

y C

x D

y D

x E

y E

т. E

Таблица 2

Данные к заданию 1

Сила

Сила

Момент M

Значение

Значение

Значение

Значение

Равномерно распределенную нагрузку интенсивности q заменим равнодействующей, кН:

Вектор образует с положительным направлением осиy угол φ, который несложно найти по координатам точекC иD (см. рис. 7,а ):

Для решения задачи воспользуемся первым видом уравнений равновесия, записав их отдельно для левой и правой частей конструкции. При составлении уравнений моментов выберем в качестве моментных точек точки A – для левой иE – для правой частей конструкции, что позволит решить эти два уравнения совместно и определить неизвестные
и .

Уравнения равновесия для тела ABC :

Представим силу как сумму составляющих:
, где. Тогда уравнения равновесия для телаCDE могут быть записаны в виде

.

Решим совместно уравнения моментов, предварительно подставив в них известные значения.

Учитывая, что по аксиоме о равенстве сил действия и противодействия
, из полученной системы найдем, кН:

Тогда из оставшихся уравнений равновесия тел ABC и CDE несложно определить реакции внутренней и внешних связей, кН:

Результаты вычислений представим таблицей:

Если система сил находится в равновесии, то ее главный вектор и главный момент равны нулю:

Эти векторные равенства приводят к следующим шести скалярным равенствам:

которые называются условиями равновесия пространственной произвольной системы сил.

Первые три условия выражают равенство нулю главного вектора, следующие три - равенство нулю главного момента системы сил.

В этих условиях равновесия должны учитываться все действующие силы - как активные (задаваемые), так и реакции связей. Последние заранее неизвестны, и условия равновесия становятся уравнениями для определения этих неизвестных - уравнениями равновесия.

Поскольку максимальное число уравнений равно шести, то в задаче на равновесие тела под действием произвольной пространственной систе-мы сил можно определить шесть неизвестных реакций. При большем количестве неизвестных задача становится статически неопределенной.

И еще одно замечание. Если главный вектор и главный момент относительно некоторого центра О равны нулю, то они будут равны нулю относительно любого другого центра. Это прямо следует из материала о перемене центра приведения (доказать самостоятельно). Следовательно, если условия равновесия тела выполняются в одной системе координат, то они будут выполняться и в любой другой неподвижной системе координат. Иными словами, выбор координатных осей при составлении уравнений равновесия совершенно произволен.

Прямоугольная плита (рис. 51, а) весом удерживается в горизонтальном положении сферическим шарниром О, подшипником А и тросом BE, причем точки находятся на одной вертикали. В точке D к плите приложена сила , перпендикулярная стороне OD и наклоненная к плоскости плиты под углом 45°. Определить натяжение троса и реакции опор в точках Он А, если и .

Для решения задачи рассматриваем равновесие плиты. К активным силам Р, G добавляем реакции связей - составляющие реакции сферического шарнира, реакции , подшипника, реакцию троса. Одновременно вводим координатные оси Oxyz (рис. 51, б). Видно, что полученная совокупность сил образует произвольную пространственную систему, в которой силы неизвестны.

Для определения неизвестных составляем уравнения равновесия.

Начинаем с уравнения проекций сил на ось :

Поясним определение проекции вычисление осуществляется в два приема- вначале определяется проекция силы Т на плоскость , далее, проектируя на осъ х (удобнее на ось , параллельную ), находим (см. рис. 51,б):

Этим способом двойного проектирования удобно пользоваться, когда линия действия силы и ось не пересекаются. Далее составляем:

Уравнение моментов сил относительно оси имеет вид:

Моменты сил в уравнении отсутствуют, так как эти силы либо пересекают ось х(), либо ей параллельны . В обоих этих случаях момент силы относительно оси равен нулю (см. с. 41).

Вычисление момента силы часто облегчается, если силу разложить подходящим образом на составляющие и воспользоваться теоремой Вариньона. В данном случае это удобно сделать для силы . Разлагая ее на горизонтальную и вертикальную составляющие, можем написать.