Метод фурье для уравнения теплопроводности. Решение уравнения теплопроводности Уравнение теплопроводности имеет вид

Решение алгебраических уравнений методом Ньютона

Достаточно популярным методом решения уравнений является метод касательных , или метод Ньютона . В этом случае уравнение вида f (x ) = 0 решается следующим образом. Сначала выбирается нулевое приближение (точка x 0). В этой точке строится касательная к графику y = f (x ). Точка пересечения этой касательной с осью абсцисс является следующим приближением для корня (точка x 1). В этой точке снова строится касательная и т.д. Последовательность точек x 0 , x 1 , x 2 … должна привести к истинному значению корня. Условием сходимости является .

Так как уравнение прямой, проходящей через точку x 0 , f (x 0) (а это и есть касательная), записывается в виде

а в качестве следующего приближения x 1 для корня исходного уравнения принимается точка пересечения этой прямой с осью абсцисс, то следует положить в этой точке y = 0:

откуда немедленно следует уравнение для нахождения следующего приближения через предыдущее:

На Рис. 3 показана реализация метода Ньютона средствами Excel. В ячейку B3 вводится начальное приближение (x 0 = -3), а затем остальных ячейках столбца вычисляются все промежуточные величины вплоть до вычисления x 1 . Для выполнения второго шага в ячейку C3 вводится значение из ячейки B10 и процесс вычислений повторяется в столбце C. Затем, выделив ячейки C2:C10 можно, потянув за маркер в правом нижнем углу выделенной области, распространить его на столбцы D:F. В итоге в ячейке F6 получено значение 0, т.е. значение в ячейке F3 есть корень уравнения.

Этот же результат можно получить, используя циклические вычисления. Тогда после заполнения первого столбца и получения первого значения x 1 следует ввести в ячейку H3 формулу =H10. При этом вычислительный процесс будет зациклен и для того, чтобы он выполнялся, в меню Сервис | Параметры на вкладке Вычисления необходимо установить флажок Итерации и указать предельное число шагов итерационного процесса и относительную погрешность (установленное по умолчанию число 0,001 явно недостаточно во многих случаях), по достижении которой вычислительный процесс остановится.

Как известно, такие физические процессы, как перенос тепла, перенос массы в процессе диффузии, подчиняются закону Фика

где l - коэффициент теплопроводности (диффузии), а T – температура (концентрация), а – поток соответствующей величины. Из математики известно, что дивергенция потока равна объемной плотности источника Q этой величины, т.е.

или, для двухмерного случая, когда исследуется распределение температуры в одной плоскости, это уравнение может быть записано в виде:

Решение этого уравнения аналитически возможно только для областей простой формы: прямоугольник, круг, кольцо. В остальных ситуациях точное решение этого уравнения невозможно, т.е. невозможно и определить распределение температуры (или концентрации вещества) в сложных случаях. Тогда приходится использовать приближенные методы решения таких уравнений.

Приближенное решение уравнения (4) в области сложной формы состоит из нескольких этапов: 1) построение сетки; 2) построение разностной схемы; 3) решение системы алгебраических уравнений. Рассмотрим последовательно каждый из этапов и их реализацию с помощью пакета Excel.

Построение сетки. Пусть область имеет форму, показанную на рис. 4. При такой форме точное аналитическое решение уравнения (4), например, методом разделения переменных, невозможно. Поэтому будем искать приближенное решение этого уравнения в отдельных точках. Нанесем на область равномерную сетку, состоящую из квадратов со стороной h . Теперь, вместо того, чтобы искать непрерывное решение уравнения (4), определенное в каждой точке области, будем искать приближенное решение, определенное только в узловых точках сетки, нанесенной на область, т.е. в углах квадратов.

Построение разностной схемы. Для построения разностной схемы рассмотрим произвольный внутренний узел сетки Ц (центральный) (рис.5). С ним соседствуют четыре узла: В (верхний), Н (нижний), Л (левый) и П (правый). Напомним, расстояние между узлами в сетке равно h . Тогда, используя выражение (2) для приближенной записи вторых производных в уравнении (4), можно приближенно записать:

откуда легко получить выражение, связывающее значение температуры в центральной точке с ее значениями в соседних точках:

Выражение (5) позволяет нам, зная значения температуры в соседних точках, вычислить ее значение в центральной точке. Такая схема, в которой производные заменяются конечными разностями, а для поиска значений в точке сетки используются только значения в ближайших соседних точках, называется цетрально-разностной схемой, а сам метод – методом конечных разностей.

Нужно понимать, что уравнение, аналогичное (5), мы получаем ДЛЯ КАЖДОЙ точки сетки, которые, таким образом, оказываются связанными друг с другом. То есть мы имеем систему алгебраических уравнений, в которой число уравнений равно числу узлов сетки. Решать такую систему уравнений можно различными методами.

Решение системы алгебраических уравнений. Метод итераций. Пусть в граничных узлах температура задана и равна 20, а мощность теплового источника равна 100. Размеры нашей области заданы и равны по вертикали 6, а по горизонтали 8, так что сторона квадрата сетки (шаг) h = 1. Тогда выражение (5) для вычисления температуры во внутренних точках принимает вид


Поставим в соответствие каждому УЗЛУ ячейку на листе Excel. В ячейках, соответствующих граничным точкам, введем число 20 (на рис. 6 они выделены серым цветом). В остальных ячейках запишем формулу (6). Например в ячейке F2 она будет выглядеть следующим образом: =(F1 + F3 + E2 + G2)/4 + 100*(1^2)/4. Записав эту формулу в ячейку F2, можно ее скопировать и вставить в остальные ячейки области, соответствующие внутренним узлам. При этом Excel будет сообщать о невозможности проведения вычислений из-за зацикливания результатов:

Нажмите «Отмена» и перейдите в окно Сервис|Параметры|Вычисления , где установите флажок в разделе «Итерации», указав при этом в качестве относительной погрешности величину 0,00001, а в качестве предельного количества итераций 10000:

Такие значения обеспечат нам малую СЧЁТНУЮ погрешность и гарантируют, что итерационный процесс дойдет до заданной погрешности.

Однако эти значения НЕ ОБЕСПЕЧИВАЮТ малую погрешность самого метода, так как последняя зависит от погрешности при замене вторых производных конечными разностями. Очевидно, что эта погрешность тем меньше, чем меньше шаг сетки, т.е. размер квадрата, на котором строится наша разностная схема. Это означает, что точно ВЫЧИСЛЕННОЕ значение температуры в узлах сетки, представленное на рис. 6, на самом деле может оказаться совсем не соответствующим действительности. Существует единственный метод проверить найденное решение: найти его на более мелкой сетке и сравнить с предыдущим. Если эти решения отличаются мало, то можно считать, что найденное распределение температуры соответствует действительности.

Уменьшим шаг вдвое. Вместо 1 он станет равным ½. Число узлов у нас соответственно изменится. По вертикали вместо 7 узлов (было 6 шагов, т.е. 7 узлов) станет 13 (12 квадратов, т.е. 13 узлов), а по горизонтали вместо 9 станет 17. При этом не следует забывать, что величина шага уменьшилась вдвое и теперь в формуле (6) вместо 1 2 нужно в правой части подставлять (1/2) 2 . В качестве контрольной точки, в которой будем сравнивать найденные решения, возьмем точку с максимальной температурой, отмеченную на рис. 6 желтым цветом. Результат вычислений показан на рис. 9:

Видно, что уменьшение шага привело к существенному изменению значения температуры в контрольной точки: на 4%. Для повышения точности найденного решения следует ещё уменьшить шаг сетки. Для h = ¼ получим в контрольной точке 199,9, а для h = 1/8 соответствующее значение равно 200,6. Можно построить график зависимости найденной величины от величины шага:

Из рисунка можно сделать вывод, что дальнейшее уменьшение шага не приведет к существенному изменению температуры в контрольной точке и точность найденного решения можно считать удовлетворительной.

Используя возможности пакета Excel, можно построить поверхность температуры, наглядно представляющую ее распределение в исследуемой области.

Теплопроводность - это один из видов теплопередачи. Передача тепла может осуществляться с помощью различных механизмов.

Все тела излучают электромагнитные волны. При комнатной температуре это в основном излучение инфракрасного диапазона. Так происходит лучистый теплообмен .

При наличии поля тяжести еще одним механизмом теплопередачи в текучих средах может служить конвекция . Если к сосуду, содержащему жидкость или газ, тепло подводится через днище, в первую очередь прогреваются нижние порции вещества, их плотность уменьшается, они всплывают вверх и отдают часть полученного тепла верхним слоям.

При теплопроводности перенос энергии осуществляется в результате непосредственной передачи энергии от частиц (молекул, атомов, электронов), обладающих большей энергией, частицам с меньшей энергией.

В нашем курсе будет рассматриваться передача теплоты путем теплопроводности.

Рассмотрим сначала одномерный случай, когда температура зависит только от одной координаты х . Пусть две среды разделены плоской перегородкой толщины l (рис. 23.1). Температуры сред Т 1 и Т 2 поддерживаются постоянными. Опытным путем можно установить, что количество тепла Q , переданное через участок перегородки площадью S за время t равно

, (23.1)

где коэффициент пропорциональности k зависит от материала стенки.

При Т 1 > Т 2 тепло переносится в положительном направлении оси х , при Т 1 < Т 2 – в отрицательном. Направление распространения тепла можно учесть, если в уравнении (23.1) заменить (Т 1 - Т 2)/l на (- dT /dx ). В одномерном случае производная dT /dx представляет собой градиент температуры . Напомним, что градиент – это вектор, направление которого совпадает с направлением наиболее быстрого возрастания скалярной функции координат (в нашем случае Т ), а модуль равен отношению приращения функции при малом смещении в этом направлении к расстоянию, на котором это приращение произошло.

Чтобы придать уравнениям, описывающим перенос тепла, более общий и универсальный вид, ведем в рассмотрение плотность потока тепла j - количество тепла, переносимое через единицу площади в единицу времени

Тогда соотношение (23.1) можно записать в виде

Здесь знак «минус» отражает тот факт, что направление теплового потока противоположно направлению градиента температуры (направлению ее возрастания). Таким образом, плотность потока тепла является векторной величиной. Вектор плотности потока тепла направлен в сторону уменьшения температуры.

Если температура среды зависит от всех трех координат, то соотношение (23.3) принимает вид

где , - градиент температуры (е 1 , е 2 , е 3 - орты осей координат).

Соотношения (23.3) и (23.4) представляют основной закон теплопроводности (закон Фурье): плотность потока тепла пропорциональна градиенту температуры. Коэффициент пропорциональности k называется коэффициентом теплопроводности (или просто теплопроводностью). Т.к. размерность плотности потока тепла [j ] = Дж/(м 2 с), а градиента температуры [dT/dx ] = К/м, то размерность коэффициента теплопроводности [k] = Дж/(м×с×К).

В общем случае температура в различных точках неравномерно нагретого вещества меняется с течением времени. Рассмотрим одномерный случай, когда температура зависит только от одной пространственной координаты х и времени t ,и получим уравнение теплопроводности - дифференциальное уравнение, которому удовлетворяет функция T = T (x ,t ).

Выделим мысленно в среде малый элемент объема в виде цилиндра или призмы, образующие которого параллельны оси х , а основания перпендикулярны (рис 23.2). Площадь основания S , а высота dx . Масса этого объема dm = rSdx , а его теплоемкость c×dm где r - плотность вещества, с - удельная теплоемкость. Пусть за малый промежуток времени dt температура в этом объеме изменилась на dT . Для этого вещество в объеме должно получить количество тепла, равное произведению его теплоемкости на изменение температуры: . С другой стороны, dQ можно может поступить в объем только через основания цилиндра: (плотности потоков тепла j могут быть как положительными, так и отрицательными). Приравнивая выражения для dQ , получим

.

Заменяя отношения малых приращений соответствующими производными, придем к соотношению

. (23.5)

Подставим в формулу (23.5) выражение (23.3) для плотности потока тепла

. (23.6)

Полученное уравнение называется уравнением теплопроводности . Если среда однородна, и теплопроводность k не зависит от температуры, уравнение принимает вид

, (23.7)

где постоянная называется коэффициентом температуропроводности среды.

Уравнениям (23.6) – (23.8) удовлетворяет бесчисленное множество функций T = T (x ,t ).

Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие состоит в задании распределения температуры в среде Т (х ,0) в начальный момент времени t = 0.

Граничные условия могут быть различными в зависимости от температурного режима на границах. Чаще всего встречаются ситуации, когда на границах заданы температура или плотность потока тепла как функции времени.

В ряде случаев в среде могут оказаться источники тепла. Теплота может выделяться в результате прохождения электрического тока, химических или ядерных реакций. Наличие источников тепла можно учесть введением объемной плотности энерговыделения q (x ,y ,z ), равной количеству теплоты, выделяемому источниками в единице объема среды за единицу времени. В этом случае в правой части уравнения (23.5) появится слагаемое q :

.

При построении математической модели распространения тепла в стержне сделаем следующие предположения:

1) стержень сделан из однородного проводящего материала с плотностью ρ ;

2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль осиОХ ;

3) стержень тонкий - это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.

Рассмотрим часть стержня на отрезке [х, х + ∆х ] (см. рис. 6) и воспользуемся законом сохранения количества тепла:

Общее количество тепла на отрезке [х, х + ∆х ] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.

Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U , вычисляется по формуле: ∆Q=CρS∆x∆U , где С -удельная теплоемкость материала (=количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S - площадь поперечного сечения.

Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q 1 = -kSU x (x, t)∆t , где k - коэффициент теплопроводности материала (= количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х , а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть U x < 0 . Следовательно, чтобыQ 1 был положительным, в формуле стоит знак минус.

Аналогично, тепловой поток через правый конец участка стержня вычисляется по формуле: Q 2 = -kSU x (x +∆x,t)∆t .

Если предположить, что внутренних источников тепла в стержне нет, и воспользоваться законом сохранения тепла, то получим:

∆Q = Q 1 - Q 2 => CpS∆x∆U = kSU x (x + ∆х, t) ∆t - kSU x (x, t)∆t .

Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:

Отсюда уравнение теплопроводности имеет вид

U t =a 2 U xx ,

где - коэффициент температуропроводности.

В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t) , получится неоднородное уравнение теплопроводности

U t = a 2 U xx + f(x,t) ,
где .

Начальные условия и граничные условия.

Для уравнения теплопроводности задается только одно начальное условие U| t=0 = φ(х) (или в другой записиU(x,0) = φ(х) ) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х) . Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.

Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g 1 (t) ≡ Т 1 и g 2 (t) ≡ Т 2 , где Т 1 и Т 2 - постоянные. Если концы поддерживаются все время при нулевой температуре, то Т 1 = Т 2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g 1 (t) = g 2 (t) = 0 , то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условиятретьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:

Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h 1 > 0 - коэффициент теплообмена с окружающей средой, g 1 (t) - температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:

Аналогично получается условие (14) на правом конце стержня, только постоянная λ 2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.

Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h 1 , очень большой.

Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:

Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.

Решение первой начально-краевой задачи для уравнения теплопроводности.

Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:

Найти решение уравнения

U t = U xx , 00,

удолетворяющее граничным условиям

U(0,t) = U(l,t)=0, t>0 ,

и начальному условию

Решим эту задачу методом Фурье.

Шаг 1 . Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t) .

Найдем частные производные:

Подставим эти производные в уравнение и разделим переменные:

По основной лемме получим

Отсюда следует

Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:

Шаг 2. Решим задачу Штурма-Лиувилля

Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.

Собственные значения равны

Собственные функции равны (См. решение задачи)

Шаг 3. Подставим собственные значения в уравнение а) и решим его:

Шаг 4. Выпишем частные решения уравнения (15):

В силу линейности и однородности уравнения (15) их линейная комбинация

также будет решением этого уравнения, причем функция U(x,t) удолетворяет и граничным условиям (16).

Шаг 5. Определим коэффициенты A n в (19), используя начальное условие (17):

Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам


Похожая информация.


Уравнение теплопроводности в однородной среде, как мы видели, имеет вид

Коэффициент внутренней теплопроводности, с - теплоемкость вещества и - плотность. Кроме уравнения (1), нужно иметь в виду начальное условие, дающее начальное распределение температуры и при

Если тело ограничено поверхностью (S), то на этой поверхности мы будем иметь и предельное условие, которое может быть различным, смотря по физическим обстоятельствам. Так, например, поверхность (S) может поддерживаться при определенной температуре, которая может и меняться с течением времени. В этом случае предельное условие сводится к заданию функции U на поверхности (S), причем эта заданная функция может зависеть и от времени t. Если температура поверхности не фиксирована, но имеется лучеиспускание в окружающую среду данной температуры то по закону Ньютона, правда, далеко не точному, поток тепла через поверхность (S) пропорционален разности температур окружающего пространства и поверхности тела (S). Это дает предельное условие вида

где коэффициент пропорциональности h называется коэффициентом внешней теплопроводности.

В случае распространения тепла в теле линейных размеров, т. е. в однородном стержне, который мы считаем расположенным вдоль оси вместо уравнения (1) мы будем иметь уравнение

При такой форме уравнения не учитывается, конечно, тепловой обмен между поверхностью стержня и окружающим пространством.

Уравнение (S) можно получить также из уравнения (1), предполагая U не зависящей от . Начальное условие в случае стержня

Формулы для расчета температурного поля и теплового потока в частных задачах стационарной и нестационарной теплопроводности получают исходя из математического описания (математической модели) процесса. Основу модели составляет дифференциальное уравнение теплопроводности, которое выводится с привлечением первого закона термодинамики для тел, не совершающих работы, и закона теплопроводности Фурье. Дифференциальное уравнение физического процесса обычно выводится при тех или иных допущениях, упрощающих процесс. Поэтому получаемое уравнение описывает класс процессов только в пределах принятых допущений. Каждая конкретная задача описывается соответствующими условиями однозначности. Таким образом, математическое описание процесса теплопроводности включает дифференциальное уравнение теплопроводности и условия однозначности.

Рассмотрим вывод дифференциального уравнения теплопроводности при следующих допущениях:

  • а) тело однородно и анизотропно;
  • б) коэффициент теплопроводности зависит от температуры;
  • в) деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;
  • г) внутри тела имеются равномерно распределенные внутренние источники теплоты q v = f(x, у, z, т) = const;
  • д) перемещение макрочастиц тела относительно друг друга (конвекция) отсутствует.

В теле с принятыми характеристиками выделяем элементарный объем в форме параллелепипеда с ребрами dx, dy, dz, определенно ориентированный в ортогональной системе координат (рис. 14.1). В соответствии с первым законом термодинамики для тел, не совершающих работы, изменение внутренней энергии dU вещества в выделенном объеме за время dx равно сумме теплоты, поступающей

Рис. 14.1.

в объем вследствие теплопроводности dQ x , и теплоты, выделенной внутренними источниками dQ 2 ".

Из термодинамики известно, что изменение внутренней энергии вещества в объеме dV за время dx равно

где dG = рdV - масса вещества; р - плотность; с - удельная массовая теплоемкость (для сжимаемых жидкостей c = c v (изохорной теплоемкости)).

Количество энергии, выделенное внутренними источниками,

где q v - объемная плотность внутренних источников теплоты, Вт/м 3 .

Тепловой поток, поступающий в объем теплопроводностью, разделим на три составляющих соответственно направлению осей координат: Через противоположные грани теплота будет

отводиться в количестве соответственно Разница между количеством подведенной и отведенной теплоты эквивалентна изменению внутренней энергии вследствие теплопроводности dQ v Представим эту величину как сумму составляющих по осям координат:

Тогда в направлении оси х имеем

Поскольку -

плотности тепловых потоков на поотивоположных гоанях.

Функция q x+dx является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Ограничиваясь двумя первыми членами ряда и подставляя в (14.6), получаем

Аналогичным образом получаем:

После подстановки (14.8)-(14.10) в (14.4) имеем

Подставляя (14.2), (14.3) и (14.11) в (14.1), получаем дифференциальное уравнение переноса теплоты теплопроводностью с учетом внутренних источников:

Согласно закону теплопроводности Фурье записываем выражения для проекций на оси координат плотности теплового потока:

где Х х, Х у, X z - коэффициенты теплопроводности в направлении координатных осей (тело анизотропное).

Подставляя эти выражения в (14.12), получаем

Уравнение (14.13) называют дифференциальным уравнением теплопроводности для анизотропных тел с независимыми от температуры физическими свойствами.

Если принять X = const, а тело изотропным, уравнение теплопроводности принимает вид

Здесь а = Х/(ср), м 2 /с, - коэффициент температуропроводности,

который является физическим параметром вещества, характеризующим скорость изменения температуры в процессах нагревания или охлаждения. Тела, выполненные из вещества с большим коэффициентом температуропроводности, при прочих равных условиях нагреваются и охлаждаются быстрее.

В цилиндрической системе координат дифференциальное уравнение теплопроводности для изотропного тела с постоянными физическими свойствами имеет вид

где г, z, Ф - соответственно радиальная, осевая и угловая координаты.

Уравнения (14.13), (14.14) и (14.15) описывают процесс теплопроводности в самом общем виде. Конкретные задачи отличаются условиями однозначности , т.е. описанием особенностей протекания рассматриваемого процесса.

Условия однозначности. Исходя из физических представлений о теплопроводности можно выделить факторы, влияющие на процесс: физические свойства вещества; размеры и форма тела; начальное распределение температуры; условия теплообмена на поверхности (границе) тела. Таким образом, условия однозначности подразделяются на физические, геометрические, начальные и граничные (краевые).

Физическими условиями задаются физические параметры вещества X, с, р и распределение внутренних источников.

Геометрическими условиями задаются форма и линейные размеры тела, в котором протекает процесс.

Начальными условиями задается распределение температуры в теле в начальный момент времени t = /(х, у, z ) при т = 0. Начальные условия имеют значение при рассмотрении нестационарных процессов.

В зависимости от характера теплообмена на границе тела граничные (краевые) условия подразделяются на четыре рода.

Граничные условия первого рода. Задается распределение температуры на поверхности t n в течение процесса

В частном случае температура поверхности может оставаться постоянной (/ п = const).

Граничные условия первого рода имеют место, например, при контактном нагреве в процессах склеивания фанеры, прессования древесно-стружечных и древесно-волокнистых плит и т.п.

Граничные условия второго рода. Задается распределение значений плотности теплового потока на поверхности тела в течение процесса

В частном случае тепловой поток на поверхности может оставаться постоянным (

Граничные условия третьего рода соответствуют конвективному теплообмену на поверхности. При этих условиях должна задаваться температура жидкости, в которой находится тело, Г ж = /(т), и коэффициент теплоотдачи ос. В общем случае коэффициент теплоотдачи - переменная величина, поэтому должен задаваться закон его изменения а =/(т). Возможен частный случай: / ж = const; а = const.

Граничные условия четвертого рода характеризуют условия теплообмена тел с различными коэффициентами теплопроводности при их идеальном контакте, когда теплота передается теплопроводностью и тепловые потоки по разные стороны поверхности контакта равны:

Принятые физические допущения, уравнение, выведенное при этих допущениях, и условия однозначности составляют аналитическое описание (математическую модель) процессов теплопроводности. Успех использования полученной модели для решения конкретной задачи будет зависеть от того, насколько принятые допущения и условия однозначности адекватны реальным условиям.

Уравнения (14.14) и (14.15) решаются достаточно просто аналитически для одномерного стационарного теплового режима. Решения рассмотрены ниже. Для двумерных и трехмерных стационарных процессов применяются приближенные численные методы

Для решения уравнений (14.13)-(14.15) в условиях нестационарного теплового режима используется ряд методов, рассмотренных подробно в специальной литературе . Известны точные и приближенные аналитические методы, численные методы и др.

Численное решение уравнения теплопроводности осуществляется в основном методом конечных разностей . Выбор того или иного метода решения зависит от условий задачи. В результате решения аналитическими методами получают формулы, применимые для решения круга инженерных задач в соответствующих условиях. Численные методы дают возможность получить температурное поле t=f(x, у, z, т) в виде набора дискретных значений температуры в различных точках в фиксированные моменты времени для конкретной задачи. Поэтому использование аналитических методов предпочтительно, однако это не всегда возможно для многомерных задач и сложных граничных условий.